Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.959
Filter
1.
Neural Regen Res ; 20(4): 1042-1057, 2025 Apr 01.
Article in English | MEDLINE | ID: mdl-38989936

ABSTRACT

Spinal cord injuries impose a notably economic burden on society, mainly because of the severe after-effects they cause. Despite the ongoing development of various therapies for spinal cord injuries, their effectiveness remains unsatisfactory. However, a deeper understanding of metabolism has opened up a new therapeutic opportunity in the form of metabolic reprogramming. In this review, we explore the metabolic changes that occur during spinal cord injuries, their consequences, and the therapeutic tools available for metabolic reprogramming. Normal spinal cord metabolism is characterized by independent cellular metabolism and intercellular metabolic coupling. However, spinal cord injury results in metabolic disorders that include disturbances in glucose metabolism, lipid metabolism, and mitochondrial dysfunction. These metabolic disturbances lead to corresponding pathological changes, including the failure of axonal regeneration, the accumulation of scarring, and the activation of microglia. To rescue spinal cord injury at the metabolic level, potential metabolic reprogramming approaches have emerged, including replenishing metabolic substrates, reconstituting metabolic couplings, and targeting mitochondrial therapies to alter cell fate. The available evidence suggests that metabolic reprogramming holds great promise as a next-generation approach for the treatment of spinal cord injury. To further advance the metabolic treatment of the spinal cord injury, future efforts should focus on a deeper understanding of neurometabolism, the development of more advanced metabolomics technologies, and the design of highly effective metabolic interventions.

2.
J Hematol Oncol ; 17(1): 65, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123202

ABSTRACT

The past few decades have witnessed the rise of immunotherapy for Gastrointestinal (GI) tract cancers. The role of immune checkpoint inhibitors (ICIs), particularly programmed death protein 1 (PD-1) and PD ligand-1 antibodies, has become increasingly pivotal in the treatment of advanced and perioperative GI tract cancers. Currently, anti-PD-1 plus chemotherapy is considered as first-line regimen for unselected advanced gastric/gastroesophageal junction adenocarcinoma (G/GEJC), mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer (CRC), and advanced esophageal cancer (EC). In addition, the encouraging performance of claudin18.2-redirected chimeric antigen receptor T-cell (CAR-T) therapy in later-line GI tract cancers brings new hope for cell therapy in solid tumour treatment. Nevertheless, immunotherapy for GI tumour remains yet precise, and researchers are dedicated to further maximising and optimising the efficacy. This review summarises the important research, latest progress, and future directions of immunotherapy for GI tract cancers including EC, G/GEJC, and CRC.


Subject(s)
Gastrointestinal Neoplasms , Immune Checkpoint Inhibitors , Immunotherapy , Humans , Gastrointestinal Neoplasms/therapy , Gastrointestinal Neoplasms/immunology , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use
3.
Hortic Res ; 11(8): uhae177, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39108584

ABSTRACT

Citrus reticulata 'Chachi' (CRC) has long been recognized for its nutritional benefits, health-promoting properties, and pharmacological potential. Despite its importance, the bioactive components of CRC and their biosynthetic pathways have remained largely unexplored. In this study, we introduce a gap-free genome assembly for CRC, which has a size of 312.97 Mb and a contig N50 size of 32.18 Mb. We identified key structural genes, transcription factors, and metabolites crucial to flavonoid biosynthesis through genomic, transcriptomic, and metabolomic analyses. Our analyses reveal that 409 flavonoid metabolites, accounting for 83.30% of the total identified, are highly concentrated in the early stage of fruit development. This concentration decreases as the fruit develops, with a notable decline in compounds such as hesperetin, naringin, and most polymethoxyflavones observed in later fruit development stages. Additionally, we have examined the expression of 21 structural genes within the flavonoid biosynthetic pathway, and found a significant reduction in the expression levels of key genes including 4CL, CHS, CHI, FLS, F3H, and 4'OMT during fruit development, aligning with the trend of flavonoid metabolite accumulation. In conclusion, this study offers deep insights into the genomic evolution, biosynthesis processes, and the nutritional and medicinal properties of CRC, which lay a solid foundation for further gene function studies and germplasm improvement in citrus.

4.
BMC Pulm Med ; 24(1): 376, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090648

ABSTRACT

Pulmonary benign metastasizing leiomyoma is an uncommon condition, predominantly affecting women of childbearing age with a history of uterine smooth muscle tumors and uterine leiomyoma surgery for uterine leiomyoma. The progression of PBML is often unpredictable and depends on the extent of lung involvement. Generally, most patients remain asymptomatic, but a minority may experience coughing, wheezing, or shortness of breath, which are frequently misdiagnosed as pneumonia. consequently, this presents significant challenges in both treatment and nursing care before diagnosis. This paper reports the case of a 35-year-old woman primarily diagnosed with acute hypoxic respiratory failure who was transferred from the emergency room to the intensive care unit. The initial computed tomography scan of the patient's lungs indicated diffuse interstitial pneumonia, but the sequencing of the alveolar lavage fluid pathogen macro did not detect any bacteria, fungi, or viruses. Moreover, the patient remained in a persistent hypoxic state before the definitive diagnosis. Therefore, our focus was on maintaining the airway patency of the patient, using prone ventilation, inhaling nitric oxide, monitoring electrical impedance tomography, and preventing ventilator-associated pneumonia to improve oxygenation, while awaiting immunohistochemical staining of the patient's biopsied lung tissue. This would help us clarify the diagnosis and treat it based on etiology. After meticulous treatment and nursing care, the patient was weaned off the ventilator after 26 days and transferred to the respiratory ward after 40 days. This case study may serve as a reference for clinical practice and assist patients suffering from PBML.


Subject(s)
Leiomyoma , Lung Neoplasms , Respiratory Insufficiency , Uterine Neoplasms , Humans , Female , Adult , Leiomyoma/pathology , Leiomyoma/complications , Leiomyoma/diagnosis , Respiratory Insufficiency/etiology , Lung Neoplasms/secondary , Lung Neoplasms/complications , Lung Neoplasms/pathology , Uterine Neoplasms/pathology , Uterine Neoplasms/complications , Uterine Neoplasms/diagnosis , Tomography, X-Ray Computed , Hypoxia/etiology , Diagnosis, Differential
5.
Nat Commun ; 15(1): 7044, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147797

ABSTRACT

Microflow catalysis is a cutting-edge approach to advancing chemical synthesis and manufacturing, but the challenge lies in developing efficient and stable multiphase catalysts. Here we showcase incorporating amine-containing metal-organic cages into automated microfluidic reactors through covalent bonds, enabling highly continuous flow catalysis. Two Fe4L4 tetrahedral cages bearing four uncoordinated amines were designed and synthesized. Post-synthetic modifications of the amine groups with 3-isocyanatopropyltriethoxysilane, introducing silane chains immobilized on the inner walls of the microfluidic reactor. The immobilized cages prove highly efficient for the reaction of anthranilamide with aldehydes, showing superior reactivity and recyclability relative to free cages. This superiority arises from the large cavity, facilitating substrate accommodation and conversion, a high mass transfer rate and stable covalent bonds between cage and microreactor. This study exemplifies the synergy of cages with microreactor technology, highlighting the benefits of heterogenous cages and the potential for future automated synthesis processes.

6.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39162607

ABSTRACT

This paper introduces a novel digital triangular-trapezoidal double-channel shaping algorithm to enhance the counting rate of resistive anode detectors. The algorithm is based on the trapezoidal shaping algorithm and improves it. At the extreme counting rate, the trapezoidal shaping algorithm cannot alleviate the pulse pileup, so the counting rate cannot meet the requirements of a high performance detector. The triangular-trapezoidal double-channel shaping algorithm is introduced in the resistance anode detector, which can replace the trapezoidal shaping filtering algorithm to process the output signal of the resistance anode detector and obtain the single photon position information. This improvement improves the counting rate of the resistor anode detector and reduces the resolution degradation caused by pulse pileup. The algorithm is simulated by System Generator software and implemented on FPGA (field programmable gate array). The triangular-trapezoidal double-channel shaping algorithm presented in this paper plays an important role in reducing electronic noise and pulse pileup. The algorithm is subjected to simulation testing, and it can recognize signals with a minimum pulse interval of 1 µs and counting rate up to 1000 kcps.

7.
J Dent Sci ; 19(3): 1827-1833, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39035274

ABSTRACT

Background/purpose: Telemedicine has gained the popularity during COVID-19 pandemic. "Teledentistry" as the dental application of telemedicine was also with increased attention. The bibliometric analysis was employed to examine the global research trends and the current implementation status of teledentistry. Materials and methods: Titles and subjects were searched in the Web of Science database by using the keywords "teledentistry OR oral telemedicine OR dental telemedicine OR telemedicine in dentistry" in the category of Dentistry, Oral Surgery & Medicine. Documents were collected from the establishment date up to December 31, 2023. Microsoft Excel was used for the descriptive and statistical analyses. The data were exhibited with visualization by VOSviewer. Results: A total of 146 articles were identified for bibliometric analysis. An upward trend in the number of publications was evident. The statistical analysis indicated a notable increased teledentistry publications affected by COVID-19 pandemic (P < 0.01). The applications of teledentistry were mainly related to clinical practice (89.73%), such as oral and maxillofacial surgery, orthodontics, dental caries, oral mucosal lesions, and dental emergencies. For geographic distributions, the United States lead with 46 publications (34%) by corresponding authors listed in the article. The keyword network analysis highlighted the prominent research areas and the changes influenced by the pandemic and technological development, respectively. Conclusion: This bibliometric study provided an overview of the progress, trends and current directions for teledentistry in the fields of dentistry, oral surgery and medicine.

8.
Biomol Biomed ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39036926

ABSTRACT

Immune checkpoint inhibitors enhance the tumor-killing ability of T-cells in non-small cell lung cancer (NSCLC), thereby boosting overall survival (OS) and transforming treatment for advanced stages. However, challenges persist, including low response rates and the absence of effective markers for candidate selection. This study evaluated the impact of hemoglobin, albumin, and platelet (HALP), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) on immunotherapy efficacy and survival in advanced NSCLC. Furthermore, the study aimed to develop a nomogram based on these parameters. Clinical and hematological data from patients diagnosed with NSCLC who received immunotherapy were analyzed. Efficacy was assessed using the immune Response Evaluation Criteria in Solid Tumors (iRECIST), and progression-free survival (PFS) and OS were analyzed. Prediction models were based on baseline and post-treatment HALP, NLR, and PLR. The 203 included patients had a median follow-up of 16 months, a median PFS (mPFS) of 7 months (6.0 - 8.0), while the median OS (mOS) was not available (24.0 - not available). The PLR before treatment (PLR0) was linked to a higher disease control rate (DCR) (odds ratio [OR] = 0.258), while initial immunotherapy and NLR after four cycles of treatment (NLR4C) significantly boosted the objective response rate (ORR). Cox regression showed that HALP before treatment (HALP0), HALP after four cycles of treatment (HALP4C), and NLR before treatment (NLR0) significantly influenced PFS. Additionally, HALP0, NLR0, and PLR after four cycles of treatment (PLR4C) were associated with OS. The C-indices for PFS and OS were 0.823 and 0.878, respectively, indicating good prediction accuracy. HALP, NLR, and PLR at various time points effectively predicted immunotherapy response in advanced NSCLC patients. Low HALP with high NLR and PLR indicated a poor prognosis. The findings can provide the basis for stratified randomized controlled trials (RCTs) in the future.

9.
Mol Neurobiol ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037529

ABSTRACT

Neuroinflammation has been proven to drive cognitive impairment associated with neurodegenerative diseases. It has been demonstrated that mitochondrial dysfunction is associated with cognitive impairment caused by neuroinflammation. We hypothesized that the transfer of exogenous mitochondria may be beneficial to the therapy of cognitive impairment induced by neuroinflammation. In the study, the effect of exogenous mitochondria on cognitive impairment induced by neuroinflammation was investigated. The results showed that mitochondrial treatment ameliorated the cognitive performance of lipopolysaccharide (LPS)-treated mice. Additionally, mitochondrial therapy attenuated neuronal injury and down-regulated the expression of proinflammatory cytokines, including TNF-α and pro- and cleaved IL-1ß, and the expression of Iba-1 and GFAP in the hippocampus and cortex of LPS-treated mice. Additionally, mitochondrial treatment increased mitochondrial ΔΨm, ATP level, and SOD activity and attenuated MDA level and ROS production in the brains of LPS-treated mice. The study reports the beneficial effect of mitochondrial treatment against cognitive impairment of LPS-treated mice, thereby providing a potential strategy for the treatment of cognitive impairment caused by neuroinflammation.

10.
Diabetes Obes Metab ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075922

ABSTRACT

AIM: To evaluate the effects of bariatric arterial embolization (BAE) on gastric emptying of, and the glycaemic response to, an oral glucose load in an obese canine model with impaired glucose tolerance. METHODS: Eleven male dogs were fed a high-fat, high-fructose diet for 7 weeks before receiving BAE, which involved selective embolization of the left gastric artery (n = 5; 14.9 ± 0.8 kg), or the sham (n = 6; 12.6 ± 0.8 kg) procedure. Postprocedural body weight was measured weekly for 4 weeks. Prior to and at 4 weeks postprocedure, a glucose solution containing 13C-acetate was administered orally for evaluation of the gastric half-emptying time (T50) and the glycaemic response. The relationship between the changes in the blood glucose area under the curve over the first 60 minutes (AUC0-60min) and the T50 was also assessed. RESULTS: At 4 weeks postprocedure, BAE reduced body weight (BAE vs. the sham procedure: -5.7% ± 0.9% vs. 3.5% ± 0.9%, P < .001), slowed gastric emptying (T50 at baseline vs. postprocedure: 75.5 ± 2.0 vs. 82.5 ± 1.8 minutes, P = .021 in the BAE group; 73.8 ± 1.8 vs. 74.3 ± 1.9 minutes in the sham group) and lowered the glycaemic response to oral glucose (AUC0-60min at baseline vs. postprocedure: 99.2 ± 13.7 vs. 67.6 ± 9.8 mmol·min/L, P = .043 in the BAE group; 100.2 ± 13.4 vs. 103.9 ± 14.6 mmol·min/L in the sham group). The change in the glucose AUC0-60min correlated inversely with that of the T50 (r = -0.711; P = .014). CONCLUSIONS: In a canine model with impaired glucose tolerance, BAE, while reducing body weight, slowed gastric emptying and attenuated the glycaemic response to an oral glucose load.

11.
Infection ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995550

ABSTRACT

BACKGROUND: Carbapenem-resistant gram-negative bacteria (CRGNB) present a considerable global threat due to their challenging treatment and increased mortality rates, with bloodstream infection (BSI) having the highest mortality rate. Patients with end-stage renal disease (ESRD) undergoing renal replacement therapy (RRT) face an increased risk of BSI. Limited data are available regarding the prognosis and treatment outcomes of CRGNB-BSI in patients with ESRD in intensive care units (ICUs). METHODS: This multi-center retrospective observational study included a total of 149 ICU patients with ESRD and CRGNB-BSI in Taiwan from January 2015 to December 2019. Clinical and microbiological outcomes were assessed, and multivariable regression analysis was used to evaluate the independent risk factors for day-28 mortality and the impact of antimicrobial therapy regimen on treatment outcomes. RESULTS: Among the 149 patients, a total of 127 patients (85.2%) acquired BSI in the ICU, with catheter-related infections (47.7%) and pneumonia (32.2%) being the most common etiologies. Acinetobacter baumannii (49.0%) and Klebsiella pneumoniae (31.5%) were the most frequently isolated pathogens. The day-28 mortality rate from BSI onset was 52.3%, and in-hospital mortality was 73.2%, with survivors experiencing prolonged hospital stays. A higher Sequential Organ Failure Assessment (SOFA) score (adjusted hazards ratio [aHR], 1.25; 95% confidence interval [CI] 1.17-1.35) and shock status (aHR, 2.12; 95% CI 1.14-3.94) independently predicted day-28 mortality. Colistin-based therapy reduced day-28 mortality in patients with shock, a SOFA score of ≥ 13, and Acinetobacter baumannii-related BSI. CONCLUSIONS: CRGNB-BSI led to high mortality in critically ill patients with ESRD. Day-28 mortality was independently predicted by a higher SOFA score and shock status. In patients with higher disease severity and Acinetobacter baumannii-related BSI, colistin-based therapy improved treatment outcomes.

12.
Mech Ageing Dev ; 221: 111962, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004152

ABSTRACT

Endothelial cell senescence characterized by reactive oxygen species (ROS) accumulation and chronic inflammation is widely recognized as a key contributor to atherosclerosis (AS). Regulated in development and DNA damage response 1 (REDD1), a conserved stress-response protein that regulates ROS production, is involved in the pathogenesis of various age-related diseases. However, the role of REDD1 in endothelial cell senescence is still unclear. Here, we screened REDD1 as a differentially expressed senescence-related gene in the AS progression using bioinformatics methods, and validated the upregulation of REDD1 expression in AS plaques, senescent endothelial cells, and aging aorta by constructing AS mice, D-galactose (DG)-induced senescent endothelial cells and DG-induced accelerated aging mice, respectively. siRNA against REDD1 could improve DG-induced premature senescence of endothelial cells and inhibit ROS accumulation, similar to antioxidant N-Acetylcysteine (NAC) treatment. Meanwhile, NAC reduced the upregulation of REDD1 induced by DG, supporting the positive feedback loop between REDD1 and ROS contributes to endothelial cell senescence. Mechanistically, the regulatory effect of REDD1 on ROS might be related to the TXNIP-REDD1 interaction in DG-induced endothelial cell senescence. Collectively, experiments above provide evidence that REDD1 participates in endothelial cell senescence through repressing TXNIP-mediated oxidative stress, which may be involved in the progression of atherosclerosis.

13.
Nutr Metab (Lond) ; 21(1): 42, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956581

ABSTRACT

BACKGROUND: While previous population studies have shown that higher triglyceride-glucose (TyG) index values are associated with an increased risk of congestive heart failure (CHF), the relationship between TyG and CHF in patients with abnormal glucose metabolism remains understudied. This study aimed to evaluate the association between TyG and CHF in individuals with diabetes and prediabetes. METHODS: The study population was derived from the National Health and Nutrition Examination Survey (NHANES) spanning from 1999 to 2018. The exposure variable, TyG, was calculated based on triglyceride and fasting blood glucose levels, while the outcome of interest was CHF. A multivariate logistic regression analysis was employed to assess the association between TyG and CHF. RESULTS: A total of 13,644 patients with diabetes and prediabetes were included in this study. The results from the fitting curve analysis demonstrated a non-linear U-shaped correlation between TyG and CHF. Additionally, linear logistic regression analysis showed that each additional unit of TyG was associated with a non-significant odds ratio (OR) of 1.03 (95%CI: 0.88-1.22, P = 0.697) for the prevalence of CHF. A two-piecewise logistic regression model was used to calculate the threshold effect of the TyG. The log likelihood ratio test (p < 0.05) indicated that the two-piecewise logistic regression model was superior to the single-line logistic regression model. The TyG tangent point was observed at 8.60, and on the left side of this point, there existed a negative correlation between TyG and CHF (OR: 0.54, 95%CI: 0.36-0.81). Conversely, on the right side of the inflection point, a significant 28% increase in the prevalence of CHF was observed per unit increment in TyG (OR: 1.28, 95%CI: 1.04-1.56). CONCLUSIONS: The findings from this study suggest a U-shaped correlation between TyG and CHF, indicating that both elevated and reduced levels of TyG are associated with an increased prevalence of CHF.

14.
Curr Med Sci ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990450

ABSTRACT

OBJECTIVE: Alzheimer's disease (AD) has become a significant global concern, but effective drugs able to slow down AD progression is still lacked. Electroacupuncture (EA) has been demonstrated to ameliorate cognitive impairment in individuals with AD. However, the underlying mechanisms remains poorly understood. This study aimed at examining the neuroprotective properties of EA and its potential mechanism of action against AD. METHODS: APP/PS1 transgenic mice were employed to evaluate the protective effects of EA on Shenshu (BL 23) and Baihui (GV 20). Chemogenetic manipulation was used to activate or inhibit serotonergic neurons within the dorsal raphe nucleus (DRN). Learning and memory abilities were assessed by the novel object recognition and Morris water maze tests. Golgi staining, western blot, and immunostaining were utilized to determine EA-induced neuroprotection. RESULTS: EA at Shenshu (BL 23) and Baihui (GV 20) effectively ameliorated learning and memory impairments in APP/PS1 mice. EA attenuated dendritic spine loss, increased the expression levels of PSD95, synaptophysin, and brain-derived neurotrophic factor in hippocampus. Activation of serotonergic neurons within the DRN can ameliorate cognitive deficits in AD by activating glutamatergic neurons mediated by 5-HT1B. Chemogenetic inhibition of serotonergic neurons in the DRN reversed the effects of EA on synaptic plasticity and memory. CONCLUSION: EA can alleviate cognitive dysfunction in APP/PS1 mice by activating serotonergic neurons in the DRN. Further study is necessary to better understand how the serotonergic neurons-related neural circuits involves in EA-induced memory improvement in AD.

15.
Nat Commun ; 15(1): 5772, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982042

ABSTRACT

It is well established that the medial prefrontal cortex (mPFC) exerts top-down control of many behaviors, but little is known regarding how cross-talk between distinct areas of the mPFC influences top-down signaling. We performed virus-mediated tracing and functional studies in male mice, homing in on GABAergic projections whose axons are located mainly in layer 1 and that connect two areas of the mPFC, namely the prelimbic area (PrL) with the cingulate area 1 and 2 (Cg1/2). We revealed the identity of the targeted neurons that comprise two distinct types of layer 1 GABAergic interneurons, namely single-bouquet cells (SBCs) and neurogliaform cells (NGFs), and propose that this connectivity links GABAergic projection neurons with cortical canonical circuits. In vitro electrophysiological and in vivo calcium imaging studies support the notion that the GABAergic projection neurons from the PrL to the Cg1/2 exert a crucial role in regulating the activity in the target area by disinhibiting layer 5 output neurons. Finally, we demonstrated that recruitment of these projections affects impulsivity and mechanical responsiveness, behaviors which are known to be modulated by Cg1/2 activity.


Subject(s)
GABAergic Neurons , Gyrus Cinguli , Interneurons , Prefrontal Cortex , Animals , Prefrontal Cortex/physiology , Prefrontal Cortex/cytology , Male , Gyrus Cinguli/physiology , Gyrus Cinguli/cytology , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Mice , Interneurons/physiology , Mice, Inbred C57BL , Nerve Net/physiology , Neural Pathways/physiology
16.
Microbiol Resour Announc ; 13(8): e0029124, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38967467

ABSTRACT

Here, we report the complete genome sequence of Erwinia amylovora PBI209 that causes fire blight isolated from a necrotic flower of Pyrus sinkiangensis in Xinjiang, China. The genome consists of 3,800,955 bp, with 3,403 protein-coding genes and a guanine-cytosine content of 53.61%.

17.
Ecotoxicol Environ Saf ; 282: 116715, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39002378

ABSTRACT

Intercropping with hyperaccumulators can facilitate the safe utilization of cadmium-contaminated soil. However, the effectiveness of this approach is influenced by plant species and varieties, which necessitates research on optimal plant consortia. In this study, 8 tomato varieties (3 cherry tomatoes and 5 common large-fruit tomatoes) were intercropped with Sedum alfredii in a moderately Cd-contaminated vegetable field. The results showed that the Cd concentration in the fruits of common large-fruit tomato varieties under monoculture was 1.03-1.50 mg/kg, while that in the fruits of cherry tomato varieties was 0.67-0.71 mg/kg. After intercropping with S. alfredii, the fruit Cd concentrations of Hangza 501, Hangza 503, and Hangza 108 decreased by 16.42 %, 19.72 %, and 6.76 %, respectively, while those of the other varieties significantly increased, except for those of Hangza 8. In contrast, the shoot Cd concentration of cherry tomatoes was greater than that of large-fruit tomatoes under monoculture. Furthermore, a significant increase in the shoot Cd concentration was noted in the Hangza 501, Hangza 503 and Hangza 603 plants following intercropping. Additionally, intercropping with S. alfredii increased the concentration of soluble sugars in the fruits of Hangza 8, Hangza 501, Hangza 503 and Hangza 603 by 4.66 %, 17.91 %, 10.60 % and 17.88 %, respectively. Intercropping with tomatoes resulted in a decrease in both the biomass and Cd uptake of S. alfredii. Interestingly, the inhibitory effect on S. alfredii was less pronounced when intercropped with cherry tomatoes than when intercropped with large-fruit tomatoes. Among the intercropping treatments, S. alfredii exhibited the greatest total Cd accumulation (0.06 mg/plant) when intercropped with Hangza 503. In conclusion, the cherry tomato variety Hangza 503 was the most suitable for intercropping with S. alfredii and can be used safely for vegetable production and simultaneous phytoremediation of polluted soil. Our findings suggest that strategic selection of tomato varieties can optimize the effectiveness of "phytoextraction coupled with agro-safe production" technology for managing soil Cd concentrations.


Subject(s)
Biodegradation, Environmental , Cadmium , Fruit , Soil Pollutants , Solanum lycopersicum , Solanum lycopersicum/metabolism , Solanum lycopersicum/growth & development , Cadmium/metabolism , Cadmium/analysis , Soil Pollutants/analysis , Soil Pollutants/metabolism , Fruit/metabolism , Sedum/metabolism , Soil/chemistry , Plant Shoots/metabolism , Plant Shoots/growth & development , Agriculture/methods
18.
Antioxidants (Basel) ; 13(7)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39061886

ABSTRACT

Periodontitis, characterized by inflammation and loss of periodontal tissue, is a significant health complication for individuals with diabetes mellitus (DM). Buildup of advanced glycation end-products (AGEs) in DM poses an increased risk of periodontitis via inflammaging. Ganoderma immunomodulatory protein (GMI) shows promise in suppressing inflammaging by mitigating oxidative stress and inflammation via Nrf2 modulation. However, its specific protective effects are not fully understood. Thus, this study aimed to investigate GMI's anti-inflammaging properties and its underlying mechanism in diabetic-associated periodontitis (DP). We first simulated DP by culturing human gingival fibroblasts (HGFs) with AGEs and lipopolysaccharides from P. gingivalis (LPS). We then evaluated the impact of GMI on cell proliferation, migration and wound healing. Additionally, we assessed GMI's effects on the components of inflammaging such as reactive oxygen species (ROS) formation, cellular senescence expression, IL-6 and IL-8 secretions, and NF-κB phosphorylation. Next, we explored whether GMI's anti-inflammaging effects are mediated through the Nrf2 pathway by evaluating Nrf2 and HO-1, followed by the assessment of IL-6 and IL-8 post-Nrf2 knockdown. Our findings revealed that GMI treatment suppressed ROS production, cell senescence, IL-6 and IL-8 and NF-κB phosphorylation. Furthermore, GMI upregulated Nrf2/HO-1 expression and its protective effects were reversed when Nrf2 was knocked down. In conclusion, GMI exerts its anti-inflammaging effect via the modulation of the Nrf2/NF-κB signaling axis in DP in vitro, highlighting its potential as an effective adjunct treatment for diabetes-related periodontitis.

19.
J Lipid Res ; : 100606, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39067519

ABSTRACT

A high-fat diet (HFD) contributes to the pathogenesis of various inflammatory and metabolic diseases. Previous research confirms that under HFD conditions, the extraorbital lacrimal glands (ELGs) can be impaired, with significant infiltration of pro-inflammatory macrophages (Mps). However, the relationship between HFD and Mps polarization in the ELGs remains unexplored. We first identified and validated the differential expression of PPAR-γ in murine ELGs fed ND and HFD through RNA sequencing. Tear secretion was measured using the Schirmer test. Lipid droplet deposition within the ELGs was observed through Oil Red O staining and transmission electron microscopy. Mps phenotypes were determined through quantitative RT-PCR, immunofluorescence, and flow cytometric analysis. An in vitro high-fat culture system for Mps was established using palmitic acid (PA), with supernatants collected for co-culture with lacrimal gland acinar cells. Gene expression was determined through ELISA, immunofluorescence, immunohistochemistry, quantitative RT-PCR, and Western blot analysis. Pioglitazone reduced M1-predominant infiltration induced by HFD by increasing PPAR-γ levels in ELGs, thereby alleviating lipid deposition and enhancing tear secretion. In vitro tests indicated that PPAR-γ agonist shifted Mps from M1-predominant to M2-predominant phenotype in PA-induced Mps, reducing lipid synthesis in LGACs and promoting lipid catabolism, thus alleviating lipid metabolic disorders within ELGs. Conversely, the PPAR-γ antagonist induced opposite effects. In summary, the lacrimal gland is highly sensitive to high-fat and lipid metabolic disorders. Downregulation of PPAR-γ expression in ELGs induces Mps polarization toward predominantly M1 phenotype, leading to lipid metabolic disorder and inflammatory responses via the NF-κb/ERK/JNK/P38 pathway.

20.
Biophys J ; 123(13): 1882-1895, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38845200

ABSTRACT

The cell membrane organization has an essential functional role through the control of membrane receptor confinement in micro- or nanodomains. Several mechanisms have been proposed to account for these properties, although some features have remained controversial, notably the nature, size, and stability of cholesterol- and sphingolipid-rich domains or lipid rafts. Here, we probed the effective energy landscape acting on single-nanoparticle-labeled membrane receptors confined in raft nanodomains- epidermal growth factor receptor (EGFR), Clostridium perfringens ε-toxin receptor (CPεTR), and Clostridium septicum α-toxin receptor (CSαTR)-and compared it with hop-diffusing transferrin receptors. By establishing a new analysis pipeline combining Bayesian inference, decision trees, and clustering approaches, we systematically classified single-protein trajectories according to the type of effective confining energy landscape. This revealed the existence of only two distinct organization modalities: confinement in a quadratic energy landscape for EGFR, CPεTR, and CSαTR (A), and free diffusion in confinement domains resulting from the steric hindrance due to F-actin barriers for transferrin receptor (B). The further characterization of effective confinement energy landscapes by Bayesian inference revealed the role of interactions with the domain environment in cholesterol- and sphingolipid-rich domains with (EGFR) or without (CPεTR and CSαTR) interactions with F-actin to regulate the confinement energy depth. These two distinct mechanisms result in the same organization type (A). We revealed that the apparent domain sizes for these receptor trajectories resulted from Brownian exploration of the energy landscape in a steady-state-like regime at a common effective temperature, independently of the underlying molecular mechanisms. These results highlight that confinement domains may be adequately described as interaction hotspots rather than rafts with abrupt domain boundaries. Altogether, these results support a new model for functional receptor confinement in membrane nanodomains and pave the way to the constitution of an atlas of membrane protein organization.


Subject(s)
Membrane Microdomains , Membrane Microdomains/metabolism , Receptors, Transferrin/metabolism , Receptors, Transferrin/chemistry , Bayes Theorem , ErbB Receptors/metabolism , ErbB Receptors/chemistry , Thermodynamics , Diffusion
SELECTION OF CITATIONS
SEARCH DETAIL