Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
2.
Cancer Discov ; 7(11): 1248-1265, 2017 11.
Article in English | MEDLINE | ID: mdl-28864476

ABSTRACT

Treatment of advanced BRAFV600-mutant melanoma using a BRAF inhibitor or its combination with a MEK inhibitor typically elicits partial responses. We compared the transcriptomes of patient-derived tumors regressing on MAPK inhibitor (MAPKi) therapy against MAPKi-induced temporal transcriptomic states in human melanoma cell lines or murine melanoma in immune-competent mice. Despite heterogeneous dynamics of clinical tumor regression, residual tumors displayed highly recurrent transcriptomic alterations and enriched processes, which were also observed in MAPKi-selected cell lines (implying tumor cell-intrinsic reprogramming) or in bulk mouse tumors (and the CD45-negative or CD45-positive fractions, implying tumor cell-intrinsic or stromal/immune alterations, respectively). Tumor cell-intrinsic reprogramming attenuated MAPK dependency, while enhancing mesenchymal, angiogenic, and IFN-inflammatory features and growth/survival dependence on multi-RTKs and PD-L2. In the immune compartment, PD-L2 upregulation in CD11c+ immunocytes drove the loss of T-cell inflammation and promoted BRAFi resistance. Thus, residual melanoma early on MAPKi therapy already displays potentially exploitable adaptive transcriptomic, epigenomic, immune-regulomic alterations.Significance: Incomplete MAPKi-induced melanoma regression results in transcriptome/methylome-wide reprogramming and MAPK-redundant escape. Although regressing/residual melanoma is highly T cell-inflamed, stromal adaptations, many of which are tumor cell-driven, could suppress/eliminate intratumoral T cells, reversing tumor regression. This catalog of recurrent alterations helps identify adaptations such as PD-L2 operative tumor cell intrinsically and/or extrinsically early on therapy. Cancer Discov; 7(11); 1248-65. ©2017 AACR.See related commentary by Haq, p. 1216This article is highlighted in the In This Issue feature, p. 1201.


Subject(s)
Melanoma, Experimental/drug therapy , Melanoma/drug therapy , Protein Kinase Inhibitors/administration & dosage , Transcriptome/genetics , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Humans , Indoles/administration & dosage , Leukocyte Common Antigens/genetics , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 1/genetics , Melanoma/genetics , Melanoma/pathology , Melanoma, Experimental/genetics , Melanoma, Experimental/pathology , Mice , Mutation , Proto-Oncogene Proteins B-raf/genetics , Sulfonamides/administration & dosage , Transcriptome/drug effects
3.
J Biol Chem ; 290(22): 14218-25, 2015 May 29.
Article in English | MEDLINE | ID: mdl-25897079

ABSTRACT

Xeroderma pigmentosum group D (XPD) helicase is a component of the transcription factor IIH (TFIIH) transcription complex and plays essential roles in transcription and nucleotide excision repair. Although iron-sulfur (Fe-S) cluster binding by XPD is required for activity, the process mediating Fe-S cluster assembly remains poorly understood. We recently identified a cytoplasmic Fe-S cluster assembly (CIA) targeting complex composed of MMS19, CIAO1, and FAM96B that is required for the biogenesis of extramitochondrial Fe-S proteins including XPD. Here, we use XPD as a prototypical Fe-S protein to further characterize how Fe-S assembly is facilitated by the CIA targeting complex. Multiple lines of evidence indicate that this process occurs in a stepwise fashion in which XPD acquires a Fe-S cluster from the CIA targeting complex before assembling into TFIIH. First, XPD was found to associate in a mutually exclusive fashion with either TFIIH or the CIA targeting complex. Second, disrupting Fe-S cluster assembly on XPD by either 1) depleting cellular iron levels or 2) utilizing XPD mutants defective in either Fe-S cluster or CIA targeting complex binding blocks Fe-S cluster assembly and prevents XPD incorporation into TFIIH. Finally, subcellular fractionation studies indicate that the association of XPD with the CIA targeting complex occurs in the cytoplasm, whereas its association with TFIIH occurs largely in the nucleus where TFIIH functions. Together, these data establish a sequential assembly process for Fe-S assembly on XPD and highlight the existence of quality control mechanisms that prevent the incorporation of immature apoproteins into their cellular complexes.


Subject(s)
Iron-Sulfur Proteins/metabolism , Transcription Factor TFIIH/metabolism , Xeroderma Pigmentosum Group D Protein/metabolism , Binding Sites , Cell Nucleus/metabolism , Cytoplasm/metabolism , DNA/chemistry , DNA Helicases/metabolism , DNA Repair , HeLa Cells , Humans , Iron/chemistry , Mitochondria/metabolism , Protein Binding , Proteomics , Subcellular Fractions/metabolism , Sulfur/chemistry
4.
Cancer Cell ; 27(2): 240-56, 2015 Feb 09.
Article in English | MEDLINE | ID: mdl-25600339

ABSTRACT

Combined BRAF- and MEK-targeted therapy improves upon BRAF inhibitor (BRAFi) therapy but is still beset by acquired resistance. We show that melanomas acquire resistance to combined BRAF and MEK inhibition by augmenting or combining mechanisms of single-agent BRAFi resistance. These double-drug resistance-associated genetic configurations significantly altered molecular interactions underlying MAPK pathway reactivation. (V600E)BRAF, expressed at supraphysiological levels because of (V600E)BRAF ultra-amplification, dimerized with and activated CRAF. In addition, MEK mutants enhanced interaction with overexpressed (V600E)BRAF via a regulatory interface at R662 of (V600E)BRAF. Importantly, melanoma cell lines selected for resistance to BRAFi+MEKi, but not those to BRAFi alone, displayed robust drug addiction, providing a potentially exploitable therapeutic opportunity.


Subject(s)
Drug Resistance, Neoplasm/genetics , Melanoma/drug therapy , Melanoma/genetics , Proto-Oncogene Proteins B-raf/genetics , Cell Line, Tumor , Humans , MAP Kinase Signaling System/genetics , Melanoma/pathology , Molecular Targeted Therapy , Mutation , Protein Kinase Inhibitors/administration & dosage
5.
Cancer Discov ; 4(1): 69-79, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24265152

ABSTRACT

BRAF inhibitor (BRAFi) therapy leads to remarkable anti melanoma responses, but the initial tumor shrinkage is commonly incomplete, providing a nidus for subsequent disease progression. Adaptive signaling may underlie early BRAFi resistance and influence the selection pattern for genetic variants, causing late, acquired resistance. We show here that BRAFi (or BRAFi + MEKi) therapy in patients frequently led to rebound phosphorylated AKT (p-AKT) levels in their melanomas early on-treatment. In cell lines, BRAFi treatment led to rebound levels of receptor tyrosine kinases (RTK; including PDGFRß), phosphatidyl (3,4,5)-triphosphate (PIP3), pleckstrin homology domain recruitment, and p-AKT. PTEN expression limited this BRAFi-elicited PI3K-AKT signaling, which could be rescued by the introduction of a mutant AKT1 (Q79K) known to confer acquired BRAFi resistance. Functionally, AKT1(Q79K) conferred BRAFi resistance via amplification of BRAFi-elicited PI3K-AKT signaling. In addition, mitogen-activated protein kinase pathway inhibition enhanced clonogenic growth dependency on PI3K or AKT. Thus, adaptive or genetic upregulation of AKT critically participates in melanoma survival during BRAFi therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Melanoma/genetics , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , Skin Neoplasms/genetics , Cell Line, Tumor , HEK293 Cells , Humans , Melanoma/drug therapy , Mutation , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Skin Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL