Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 348: 123748, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38460592

ABSTRACT

Surface ozone (O3) is a crucial air pollutant that affects air quality, human health, agricultural production, and climate change. Studies on long-term O3 variations and their influencing factors are essential for understanding O3 pollution and its impact. Here, we conducted an analysis of long-term variations in O3 during 2006-2022 at the Longfengshan Regional Atmosphere Background Station (LFS; 44.44°N, 127.36°E, 330.5 m a.s.l.) situated on the northeastern edge of the Northeast China Plains. The maximum daily 8-h average (MDA8) O3 fluctuated substantially, with the annual MDA8 decreasing significantly during 2006-2015 (-0.62 ppb yr-1, p < 0.05), jumping during 2015-2016 and increasing clearly during 2020-2022. Step multiple linear regression models for MDA8 were obtained using meteorological variables, to decompose anthropogenic and meteorological contributions to O3 variations. Anthropogenic activities acted as the primary drivers of the long-term trends of MDA8 O3, contributing 73% of annual MDA8 O3 variability, whereas meteorology played less important roles (27%). Elevated O3 at LFS were primarily associated with airflows originating from the North China Plain, Northeast China Plain, and coastal areas of North China, primarily occurring during the warm months (May-October). Based on satellite products of NO2 and HCHO columns, the O3 photochemical regimes over LFS revealed NOx-limited throughout the period. NO2 increased first, reaching peak in 2011, followed by substantial decrease; while HCHO exhibited significant increase, contributing to decreasing trend in MDA8 O3 during 2006-2015. The plateauing NO2 and decreasing HCHO may contribute to the increase in MDA8 O3 in 2016. Subsequently, both NO2 and HCHO exhibited notable fluctuations, leading to significant changes in O3. The study results fill the gap in the understanding of long-term O3 trends in high-latitude areas in the Northeast China Plain and offer valuable insights for assessing the impact of O3 on crop yields, forest productivity, and climate change.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Humans , Ozone/analysis , Nitrogen Dioxide/analysis , Environmental Monitoring/methods , Air Pollution/analysis , Air Pollutants/analysis , Atmosphere/analysis , China
2.
J Environ Sci (China) ; 138: 1-9, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38135377

ABSTRACT

Biomass burning (BB) is a very important emission source that significantly adversely impacts regional air quality. BB produces a large number of primary organic aerosol (POA) and black carbon (BC). Besides, BB also provides many precursors for secondary organic aerosol (SOA) generation. In this work, the ratio of levoglucosan (LG) to organic carbon (OC) and the fire hotspots map was used to identify the open biomass burning (OBB) events, which occurred in two representative episodes, October 13 to November 30, 2020, and April 1 to April 30, 2021. The ratio of organic aerosol (OA) to reconstructed PM2.5 concentration (PM2.5*) increased with the increase of LG/OC. When LG/OC ratio is higher than 0.03, the highest OA/PM2.5* ratio can reach 80%, which means the contribution of OBB to OA is crucial. According to the ratio of LG to K+, LG to mannosan (MN) and the regional characteristics of Longfengshan, it can be determined that the crop residuals are the main fuel. The occurrence of OBB coincides with farmers' preferred choices, i.e., burning biomass in "bright weather". The "bright weather" refers to the meteorological conditions with high temperature, low humidity, and without rain. Meteorological factors indirectly affect regional biomass combustion pollution by influencing farmers' active choices.


Subject(s)
Air Pollutants , Particulate Matter , Particulate Matter/analysis , Air Pollutants/analysis , Biomass , Seasons , Environmental Monitoring , China , Carbon/analysis , Meteorological Concepts , Aerosols/analysis
3.
Sensors (Basel) ; 23(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36991980

ABSTRACT

The vertical profiles of nitrogen dioxide (NO2) and formaldehyde (HCHO) in the troposphere at the Longfengshan (LFS) regional atmospheric background station (127°36' E, 44°44' N, 330.5 m above sea level) from 24 October 2020 to 13 October 2021 were retrieved from solar scattering spectra by multi-axis differential optical absorption spectroscopy (MAX-DOAS). We analyzed the temporal variations of NO2 and HCHO as well as the sensitivity of ozone (O3) production to the concentration ratio of HCHO to NO2. The largest NO2 volume mixing ratios (VMRs) occur in the near-surface layer for each month, with high values concentrated in the morning and evening. HCHO has an elevated layer around the altitude of 1.4 km consistently. The means ± standard deviations of vertical column densities (VCDs) and near-surface VMRs were 4.69 ± 3.72 ×1015 molecule·cm-2 and 1.22 ± 1.09 ppb for NO2, and they were 1.19 ± 8.35 × 1016 molecule·cm-2 and 2.41 ± 3.26 ppb for HCHO. The VCDs and near-surface VMRs for NO2 were high in the cold months and low in the warm months, while HCHO presented the opposite. The larger near-surface NO2 VMRs appeared in the condition associated with lower temperature and higher humidity, but this relationship was not found between HCHO and temperature. We also found the O3 production at the Longfengshan station was mainly in the NOx-limited regime. This is the first study presenting the vertical distributions of NO2 and HCHO in the regional background atmosphere of northeastern China, which are significant to enhancing the understanding of background atmospheric chemistry and regional ozone pollution processes.

4.
J Hazard Mater ; 449: 131011, 2023 May 05.
Article in English | MEDLINE | ID: mdl-36801719

ABSTRACT

The emission of fine particles (PM2.5) from diesel trucks is enhanced by low ambient temperatures, which is a fact that has attracted considerable attention. Carbonaceous matter and polycyclic aromatic hydrocarbons (PAHs) are the dominant hazardous materials in PM2.5. These materials induce severe adverse effects on air quality and human health and contribute to climate change. The emissions from heavy- and light-duty diesel trucks were tested at an ambient temperature of - 20 to - 13 â„ƒ and 18-24 â„ƒ. This is the first study to quantify the enhanced carbonaceous matter and PAH emissions from diesel trucks at very low ambient temperatures based on an on-road emission test system. Features affecting diesel emissions, including driving speed, vehicle type, and engine certification level, were considered. The emissions of organic carbon, elemental carbon, and PAHs significantly increased from - 20 to - 13 â„ƒ. The empirical results revealed that intensive abatement of diesel emissions at low ambient temperatures could benefit human health and have a positive influence on climate change. Considering the widespread applications worldwide, an investigation into diesel emissions of carbonaceous matter and PAHs in fine particles at low ambient temperatures is urgently required.

5.
J Environ Sci (China) ; 124: 712-722, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182176

ABSTRACT

The temporal variation of greenhouse gas concentrations in China during the COVID-19 lockdown in China is analyzed in this work using high resolution measurements of near surface △CO2, △CH4 and △CO concentrations above the background conditions at Lin'an station (LAN), a regional background station in the Yangtze River Delta region. During the pre-lockdown observational period (IOP-1), both △CO2 and △CH4 exhibited a significant increasing trend relative to the 2011-2019 climatological mean. The reduction of △CO2, △CH4 and △CO during the lockdown observational period (IOP-2) (which also coincided with the Chinese New Year Holiday) reached up to 15.0 ppm, 14.2 ppb and 146.8 ppb, respectively, and a reduction of △CO2/△CO probably due to a dramatic reduction from industrial emissions. △CO2, △CH4 and △CO were observed to keep declining during the post-lockdown easing phase (IOP-3), which is the synthetic result of lower than normal CO2 emissions from rural regions around LAN coupled with strong uptake of the terrestrial ecosystem. Interestingly, the trend reversed to gradual increase for all species during the later easing phase (IOP-4), with △CO2/△CO constantly increasing from IOP-2 to IOP-3 and finally IOP-4, consistent with recovery in industrial emissions associated with the staged resumption of economic activity. On average, △CO2 declined sharply throughout the days during IOP-2 but increased gradually throughout the days during IOP-4. The findings showcase the significant role of emission reduction in accounting for the dramatic changes in measured atmospheric △CO2 and △CH4 associated with the COVID-19 lockdown and recovery.


Subject(s)
Air Pollutants , COVID-19 , Greenhouse Gases , Air Pollutants/analysis , Carbon Dioxide , China , Communicable Disease Control , Ecosystem , Environmental Monitoring , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...