Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Soc Rev ; 53(9): 4490-4606, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38502087

ABSTRACT

Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.


Subject(s)
Biomimetic Materials , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Humans , Animals , Biomineralization , Bone and Bones/chemistry , Bone and Bones/metabolism , Biomimetics/methods , Tooth/chemistry
2.
J Colloid Interface Sci ; 660: 370-380, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38244503

ABSTRACT

Solar energy-driven water evaporation technology is a promising, low-cost and sustainable approach to alleviate the global clean water shortage, but usually suffers from low water evaporation rate and severe salt deposition on the water evaporation surface. In this work, a hydrophilic bilayer photothermal paper-based three-dimensional (3D) cone flowing evaporator was designed and prepared for stable high-performance seawater desalination with excellent salt-rejecting ability. The as-prepared bilayer photothermal paper consisted of MXene (Ti3C2Tx) and HAA (ultralong hydroxyapatite nanowires, poly(acrylic acid), and poly(acrylic acid-2-hydroxyethyl ester)). The accordion-like multilayered MXene acted as the efficient solar light absorber, and ultralong hydroxyapatite (HAP) nanowires served as the thermally insulating and supporting skeleton with a porous networked structure. A siphon effect-driven unidirectional fluid transportation unit in the 3D cone flowing evaporator could guide the concentrated saline flowing away from the evaporating surface to prevent salt deposition on the evaporation surface, avoiding severe deterioration of the performance in solar water evaporation. Furthermore, combining high solar light absorption and high photothermal conversion efficiencies, low water evaporation enthalpy (1838 ±â€¯11 J g-1), and additional energy taken from the ambient environment, the as-prepared cone flowing evaporator exhibited a high water evaporation rate of 3.22 ±â€¯0.20 kg m-2 h-1 for real seawater under one sun illumination (1 kW m-2), which was significantly higher than many values reported in the literature. This study provides an effective approach for designing high-performance solar energy-driven water evaporators for sustainable seawater desalination and wastewater purification.

3.
Small ; 19(19): e2206917, 2023 May.
Article in English | MEDLINE | ID: mdl-36793253

ABSTRACT

Solar energy-driven water evaporation is a promising sustainable strategy to purify seawater and contaminated water. However, developing solar evaporators with high water evaporation rates and excellent salt resistance still faces a great challenge. Herein, inspired by the long-range ordered structure and water transportation capability of lotus stem, a biomimetic aerogel with vertically ordered channels and low water evaporation enthalpy for high-efficiency solar energy-driven salt-resistant seawater desalination and wastewater purification is developed. The biomimetic aerogel consists of ultralong hydroxyapatite nanowires as heat-insulating skeletons, polydopamine-modified MXene as a photothermal material with broadband sunlight absorption and high photothermal conversion efficiency, polyacrylamide, and polyvinyl alcohol as reagents to lower the water evaporation enthalpy and as glues to enhance the mechanical performance. The honeycomb porous structure, unidirectionally aligned microchannels, and nanowire/nanosheet/polymer pore wall endow the biomimetic aerogel with excellent mechanical properties, rapid water transportation, and excellent solar water evaporation performance. The biomimetic aerogel exhibits a high water evaporation rate (2.62 kg m-2  h-1 ) and energy efficiency (93.6%) under one sun irradiation. The superior salt-rejecting ability of the designed water evaporator enables stable and continuous seawater desalination, which is promising for application in water purification to mitigate the global water crisis.

4.
Molecules ; 27(15)2022 Aug 07.
Article in English | MEDLINE | ID: mdl-35956970

ABSTRACT

Ultralong hydroxyapatite (HAP) nanowires are promising for various biomedical applications owing to their chemical similarity to the inorganic constituent of bone, high biocompatibility, good flexibility, excellent mechanical properties, etc. However, it is still challenging to control the formation of ultralong HAP nanowires because of the presence of free PO43- ions in the reaction system containing the inorganic phosphate source. In addition, it takes a long period of time (usually tens of hours) for the synthetic process of ultralong HAP nanowires. Herein, for the first time, we have developed an eco-friendly calcium oleate precursor microwave hydrothermal method using biocompatible adenosine 5'-triphosphate (ATP) as a bio-phosphorus source and water as the only solvent for the rapid synthesis of ultralong HAP nanowires. The controllable hydrolysis of ATP can avoid the premature formation of calcium phosphate nuclei and uncontrollable crystal growth. Microwave heating can significantly shorten the synthetic time from tens of hours required by the traditional heating to 1 h, thus achieving high efficiency, energy saving and low cost. The as-prepared ultralong HAP nanowires with high flexibility have lengths of several hundred micrometers and diameters of 10~20 nm, and they usually self-assemble into nanowire bundles along their longitudinal direction. The as-prepared ultralong HAP nanowire/chitosan porous scaffold has excellent bioactivity, good biodegradation and cytocompatibility owing to the bioactive adenosine adsorbed on the surface of ultralong HAP nanowires. It is expected that ultralong HAP nanowires will be promising for various applications in the biomedical fields, such as bone defect repair, skin wound healing, and as a drug nanocarrier.


Subject(s)
Durapatite , Nanowires , Adenosine , Adenosine Triphosphate , Durapatite/chemistry , Microwaves , Nanowires/chemistry , Polyphosphates
5.
J Mater Chem B ; 9(36): 7566, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34551056

ABSTRACT

Correction for 'Highly porous and elastic aerogel based on ultralong hydroxyapatite nanowires for high-performance bone regeneration and neovascularization' by Gao-Jian Huang et al., J. Mater. Chem. B, 2021, 9, 1277-1287, DOI: 10.1039/D0TB02288H.

6.
J Nanobiotechnology ; 19(1): 270, 2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34493293

ABSTRACT

BACKGROUND: Rotator cuff tear (RCT) is a common problem of the musculoskeletal system. With the advantage of promoting bone formation, calcium phosphate materials have been widely used to augment tendon-bone healing. However, only enhancing bone regeneration may be not enough for improving tendon-bone healing. Angiogenesis is another fundamental factor required for tendon-bone healing. Therefore, it's necessary to develop a convenient and reliable method to promote osteogenesis and angiogenesis simultaneously, thereby effectively promoting tendon-bone healing. METHODS: The amorphous calcium phosphate (ACP) nanoparticles with dual biological activities of osteogenesis and angiogenesis were prepared by a simple low-temperature aqueous solution method using adenosine triphosphate (ATP) as an organic phosphorus source. The activities of osteogenesis and angiogenesis and the effect on the tendon-bone healing of ACP nanoparticles were tested in vitro and in a rat model of acute RCT. RESULTS: The ACP nanoparticles with a diameter of tens of nanometers were rich in bioactive adenosine. In vitro, we confirmed that ACP nanoparticles could enhance osteogenesis and angiogenesis. In vivo, radiological and histological evaluations demonstrated that ACP nanoparticles could enhance bone and blood vessels formation at the tendon-bone junction. Biomechanical testing showed that ACP nanoparticles improved the biomechanical strength of the tendon-bone junction and ultimately promoted tendon-bone healing of rotator cuff. CONCLUSIONS: We successfully confirmed that ACP nanoparticles could promote tendon-bone healing. ACP nanoparticles are a promising biological nanomaterial in augmenting tendon-bone healing.


Subject(s)
Adenosine Triphosphate/chemistry , Calcium Phosphates/chemistry , Nanoparticles/chemistry , Animals , Calcium Phosphates/pharmacology , Calcium Phosphates/therapeutic use , Cell Differentiation/drug effects , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/metabolism , Fibrin Tissue Adhesive/chemistry , Fibrin Tissue Adhesive/therapeutic use , Humans , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Neovascularization, Physiologic/drug effects , Osteogenesis/drug effects , Rats , Rats, Sprague-Dawley , Rotator Cuff Injuries/drug therapy , Rotator Cuff Injuries/pathology , Tendons/blood supply , Tendons/pathology , Wound Healing/drug effects
7.
J Mater Chem B ; 9(5): 1277-1287, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33439203

ABSTRACT

Hydroxyapatite (HAP) is promising for the clinical treatment of bone defects because of its excellent biocompatibility and osteo-conductivity. However, highly porous HAP scaffolds usually exhibit high brittleness and poor mechanical properties, thus organic constituents are usually added to form composite materials. In this work, a highly porous and elastic aerogel made from ultralong HAP nanowires with ultrahigh porosity (∼98.5%), excellent elasticity and suitable porous structure is prepared as the high-performance scaffold for bone defect repair. The highly porous structure of the as-prepared aerogel is beneficial to bone ingrowth and matter/fluid transfer, and the high elasticity can ensure the structural integrity of the scaffold during bone regeneration. Therefore, the HAP nanowire aerogel scaffold can promote the adhesion, proliferation and migration of rat bone marrow derived mesenchymal stem cells (rBMSCs), and elevate the protein expression of osteogenesis and angiogenesis related genes. The in vivo experimental results demonstrate that the HAP nanowire aerogel scaffold is favorable for the ingrowth of new bone and blood vessels, and thus can greatly accelerate bone regeneration and neovascularization. The as-prepared HAP nanowire aerogel scaffold shows promising potential for biomedical applications such as bone defect repair.


Subject(s)
Biocompatible Materials/pharmacology , Bone Regeneration/drug effects , Compression Bandages , Durapatite/pharmacology , Neovascularization, Pathologic/drug therapy , Tissue Scaffolds/chemistry , Animals , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Durapatite/chemical synthesis , Durapatite/chemistry , Male , Materials Testing , Neovascularization, Pathologic/pathology , Particle Size , Porosity , Rats , Rats, Sprague-Dawley , Surface Properties
8.
J Colloid Interface Sci ; 530: 9-15, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-29960123

ABSTRACT

Glycerol citrate polyester based on the condensation of glycerol and citric acid has a great potential in biomedical applications owing to biocompatible monomers and biodegradation properties. However, the applications of glycerol citrate polyester are impaired by its poor mechanical properties and high acidity caused by citric acid produced in the degradation process. In this work, a new kind of nanocomposite has been developed using ultralong hydroxyapatite (HAP) nanowires as the "skeleton", and strongly bound glycerol citrate polyester as the "muscle". The ultralong HAP nanowires interweave with each other to form a three-dimensional nanoporous network, and glycerol citrate polyester is homogeneously distributed in the nanoporous network. Owing to the reinforcement of ultralong HAP nanowires, the mechanical properties of the as-prepared nanocomposite are significantly improved compared with the pure glycerol citrate polyester, and the tensile strength even reaches to the level of human cortical bones. Furthermore, the acidity of the aqueous solution after degradation is neutralized by the reaction between citric acid and ultralong HAP nanowires, and the pH value can be stabilized. The as-prepared nanocomposite can solve some problems of the pure glycerol citrate polyester, and shows promising applications in the biomedical field.


Subject(s)
Biocompatible Materials/chemistry , Citrates/chemistry , Durapatite/chemistry , Glycerol/analogs & derivatives , Nanocomposites/chemistry , Nanowires/chemistry , Polyesters/chemistry , Materials Testing , Nanocomposites/ultrastructure , Nanowires/ultrastructure , Powder Diffraction , Tensile Strength , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...