Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612071

ABSTRACT

To promote the resource utilization of steel slag and improve the production process of steel slag in steelmaking plants, this research studied the characteristics of three different processed steel slags from four steelmaking plants. The physical and mechanical characteristics and volume stability of steel slags were analyzed through density, water absorption, and expansion tests. The main mineral phases, morphological characteristics, and thermal stability of the original steel slag and the steel slag after the expansion test are analyzed with X-ray diffractometer (XRD), scanning electron microscope (SEM), and thermogravimetric analysis (TG) tests. The results show that the composition of steel slag produced by different processes is similar. The main active substances of other processed steel slags are dicalcium silicate (C2S), tricalcium silicate (C3S), CaO, and MgO. After the expansion test, the main chemical products of steel slag are CaCO3, MgCO3, and calcium silicate hydrate (C-S-H). Noticeable mineral crystals appeared on the surface of the steel slag after the expansion test, presenting tetrahedral or cigar-like protrusions. The drum slag had the highest density and water stability. The drum slag had the lowest porosity and the densest microstructure surface, compared with steel slags that other methods produce. The thermal stability of steel slag treated by the hot splashing method was relatively higher than that of steel slag treated by the other two methods.

2.
EMBO Mol Med ; 16(4): 1027-1045, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448545

ABSTRACT

Clinical deployment of oligonucleotides requires delivery technologies that improve stability, target tissue accumulation and cellular internalization. Exosomes show potential as ideal delivery vehicles. However, an affordable generalizable system for efficient loading of oligonucleotides on exosomes remain lacking. Here, we identified an Exosomal Anchor DNA Aptamer (EAA) via SELEX against exosomes immobilized with our proprietary CP05 peptides. EAA shows high binding affinity to different exosomes and enables efficient loading of nucleic acid drugs on exosomes. Serum stability of thrombin inhibitor NU172 was prolonged by exosome-loading, resulting in increased blood flow after injury in vivo. Importantly, Duchenne Muscular Dystrophy PMO can be readily loaded on exosomes via EAA (EXOEAA-PMO). EXOEAA-PMO elicited significantly greater muscle cell uptake, tissue accumulation and dystrophin expression than PMO in vitro and in vivo. Systemic administration of EXOEAA-PMO elicited therapeutic levels of dystrophin restoration and functional improvements in mdx mice. Altogether, our study demonstrates that EAA enables efficient loading of different nucleic acid drugs on exosomes, thus providing an easy and generalizable strategy for loading nucleic acid therapeutics on exosomes.


Subject(s)
Exosomes , Muscular Dystrophy, Duchenne , Animals , Mice , Dystrophin/genetics , Mice, Inbred mdx , Exosomes/metabolism , Morpholinos/metabolism , Morpholinos/pharmacology , Morpholinos/therapeutic use , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Oligonucleotides/metabolism , Oligonucleotides/therapeutic use
3.
Nanomaterials (Basel) ; 12(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36364660

ABSTRACT

Driven by the huge thermal energy in cement concrete pavements, thermoelectric (TE) cement has attracted considerable attention. However, the current TE cement shows poor performance, which greatly limits its application. Herein, a series of Bi0.5Sb1.5Te3/carbon nanotubes (CNTs) co-reinforced cement composites have been prepared, and their TE properties were systematically investigated. It was shown that the addition of Bi0.5Sb1.5Te3 particles can effectively improve the TE properties of CNTs-reinforced cement composites by building a better conductive network, increasing energy filtering and interfaces scattering. The Bi0.5Sb1.5Te3/CNTs cement composites with 0.6 vol.% of Bi0.5Sb1.5Te3 exhibits the highest ZT value of 1.2 × 10-2, increased by 842 times compared to that of the CNTs-reinforced cement composites without Bi0.5Sb1.5Te3. The power output of this sample with the size of 2.5 × 3.5 × 12 mm3 reaches 0.002 µW at a temperature difference of 19.1 K. These findings shed new light on the development of high-performance TE cement, which can guide continued advances in their potential application of harvesting thermal energy from pavements.

4.
Molecules ; 27(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36234865

ABSTRACT

Psoriasis is a chronic inflammatory skin disorder accompanied by excessive keratinocyte proliferation. Erianin (Eri) is an ideal drug candidate for inhibiting proliferation and inducing apoptosis in the treatment of psoriasis. However, Eri's poor water solubility and low penetration activity across the skin hinder its application in local medicine. In this study, we developed a novel photo-responsive dendritic mesoporous silica nanoparticle-based carrier to deliver erianin, improved its bioavailability, and achieved sustained-release effects. Spiropyran (SP), 3-aminopropyltriethoxysilane (APTES), and perfluorodecyltriethoxysilane (PFDTES) were conjugated to the outer surface, which allowed Eri to be released in response to UV radiation. The physicochemical properties of photo-responsive dendritic mesoporous silica nanoparticles (Eri-DMSN@FSP) were characterized via multiple techniques, such as using a Fourier-transform infrared spectrometer, a high-resolution transmission electron microscope, and nuclear magnetic resonance (NMR) spectroscopy. The anti-proliferative properties and light-triggered release of erianin-loaded photo-responsive dendritic mesoporous silica nanoparticles were assessed via the MTT assay and a drug release study in vitro. Erianin-loaded photo-responsive dendritic mesoporous silica nanoparticles (UV) exhibit a significantly enhanced HaCat cell-inhibiting efficacy compared to other formulations, as demonstrated by their extremely low cell viability of 10.0% (concentration: 500 mg/mL), indicating their capability to release a drug that responds to UV radiation. The cellular uptake of photo-responsive dendritic mesoporous silica nanoparticles (DMSN@FSP) was observed via confocal laser scanning microscopy (CLSM). These experimental results show that Eri-DMSN@FSP could be effectively endocytosed into cells and respond to ultraviolet light to release Eri, achieving a more effective psoriasis treatment. Therefore, this drug delivery system may be a promising strategy for addressing the question of Eri's delivery and psoriasis therapy.


Subject(s)
Dendrimers , Nanoparticles , Psoriasis , Bibenzyls , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Dendrimers/pharmacology , Drug Carriers/chemistry , Drug Delivery Systems/methods , Drug Liberation , Humans , Nanoparticles/chemistry , Phenol , Porosity , Psoriasis/drug therapy , Silicon Dioxide/chemistry , Water
5.
Molecules ; 27(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35889477

ABSTRACT

Xanthatin (XT) is a sesquiterpene lactone isolated from the Chinese herb Xanthium, which belongs to the Asteraceae family. In this study, we developed an inflammation model via stimulating macrophage cell line (RAW 264.7 cells) with lipopolysaccharide (LPS), which was applied to assess the anti-inflammatory effect and probable mechanisms of xanthatin. When compared with the only LPS-induced group, cells that were pretreated with xanthatin were found to decrease the amount of nitric oxide (NO), reactive oxygen species (ROS) and associated pro-inflammatory factors (TNF-α, IL-1ß and IL-6), and downregulate the mRNA expression of iNOS, COX-2, TNF-α, IL-1ß, and IL-6. Interestingly, phosphorylated levels of related proteins (STAT3, ERK1/2, SAPK/JNK, IκBα, p65) were notably increased only with the LPS-activated cells, while the expression of these could be reverted by pre-treatment with xanthatin in a dose-dependent way. Meanwhile, xanthatin was also found to block NF-κB p65 from translocating into the nucleus and activating inflammatory gene transcription. Collectively, these results demonstrated that xanthatin suppresses the inflammatory effects through downregulating the nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription (STATs) signaling pathways. Taken together, xanthatin possesses the potential to act as a good anti-inflammatory medication candidate.


Subject(s)
Lipopolysaccharides , NF-kappa B , Animals , Anti-Inflammatory Agents/therapeutic use , Furans , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Macrophages , Mice , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/metabolism
6.
Materials (Basel) ; 15(12)2022 Jun 12.
Article in English | MEDLINE | ID: mdl-35744231

ABSTRACT

Non-metallic fractions (NMFs) from waste printed circuit boards (PCBs) are mostly composed of cured resin and fiber. In this study, NMF material from a PCB was ground into powder and added into matrix asphalt to produce PCB-NMF-modified asphalt. To improve the compatibility of PCB-NMF and asphalt, a compatibilizer consisting of tung oil and glycerol was also developed. The optimum compatibilizer content was determined to be 8% by weight of the PCB-NMF through a series of laboratory tests, including the softening point, penetration, ductility, and softening point difference (SPD). The micro-mechanism of NMF powder-modified asphalt was analyzed through Fourier transform infrared spectroscopy (FTIR) and a scanning electron microscope test (SEM). The performances of PCB-NMF-modified asphalt were evaluated by the dynamic shear rheology (DSR) test and the low-temperature bending beam rheometer (BBR) test. The optimum compatibilizer content was 8% by weight of the NMF powder and the optimum content of NMF powder was determined to be 30% by weight of the asphalt based on a comprehensive evaluation. The results show that PCB-NMF can significantly improve stiffness, rutting resistance, high-temperature stability, and temperature sensitivity of asphalt material at an appropriate content. The BBR tests revealed that PCB-NMF slightly weakened the cracking resistance of asphalt at low temperatures. The SEM test showed that the addition of a compatibilizer can increase the compatibility by making the NMF powder evenly dispersed. The FTIR test results implied that a chemical reaction may not have happened between PCB-NMF, compatibilizer, and the matrix asphalt. Overall, it is a promising and sustainable way to utilize PCB-NMF as a modifier for asphalt material and reduce electronic waste treatment at a low cost.

7.
Micromachines (Basel) ; 13(2)2022 Jan 30.
Article in English | MEDLINE | ID: mdl-35208357

ABSTRACT

Transverse thermoelectric performance of the artificially tilted multilayer thermoelectric device (ATMTD) is very difficult to be optimized, due to the large degree freedom in device design. Herein, an ATMTD with Fe and Bi2Te2.7Se0.3 (BTS) materials was proposed and fabricated. Through high-throughput calculation of Fe/BTS ATMTD, a maximum of calculated transverse thermoelectric figure of merit of 0.15 was obtained at a thickness ratio of 0.49 and a tilted angle of 14°. For fabricated ATMTD, the whole Fe/BTS interface is closely connected with a slight interfacial reaction. The optimizing Fe/BTS ATMTD with 12 mm in length, 6 mm in width and 4 mm in height has a maximum output power of 3.87 mW under a temperature difference of 39.6 K. Moreover the related power density per heat-transfer area reaches 53.75 W·m-2. This work demonstrates the performance of Fe/BTS ATMTD, allowing a better understanding of the potential in micro-scaled devices.

8.
Water Sci Technol ; 84(7): 1745-1756, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34662310

ABSTRACT

Urban pavement runoff has become an important pollution source endangering the quality of urban water. This paper analyzed the characteristics of particle size distribution of road-deposited sediment (RDS). The variation of pollutants with RDS content is presented. Based on continuous sampling of runoff, the variation between pollutant concentration and rainfall characteristics is revealed. The results show that each particle group shares similar content except for the group smaller than 0.075 mm. However, the smaller particles have a stronger ability to adsorb heavy metals (Zn, Pb, Cu), and a weaker ability to adsorb chemical oxygen demand (COD). The concentrations of different pollutants have different relationships with rainfall and runoff time. The concentration of suspended solids (SS) decreases steadily with runoff time, while the concentration of heavy metals increases first and then decreases. The first 30 minutes of runoff is the best time to treat heavy metals and SS. The five-day biochemical oxygen demand (BOD5) and total petroleum hydrocarbons (TPHs) concentration are mainly affected by rainfall intensity. The result presented in this paper may provide a useful reference for the treatment of pavement runoff pollution.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Biological Oxygen Demand Analysis , Metals, Heavy/analysis , Water , Water Movements , Water Pollutants, Chemical/analysis
9.
Materials (Basel) ; 13(22)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182752

ABSTRACT

Ultraviolet (UV) aging degrades the life span of asphalt pavement, nanomaterials used as modifiers exhibit good shielding function on UV light, but generally degrade the low-temperature property of asphalt, a compound modification was found to be a solution. In this study, nano-SiO2 and rubber powder were blended together with base asphalt to prepare compound modified asphalt. Compound modified asphalt with different blending dosages were subjected to UV light via a self-made UV aging simulation chamber. Basic performance tests and rheological tests were conducted including the UV aging influence. An optimum compound ratio was finally recommended based on the goal to remove the adverse effect of nano-SiO2 on the thermal cracking. Results show that the anti-UV aging property of asphalt is improved obviously due to the blocking function of nano-SiO2 and carbon black in rubber powder, and the enhancing effect of nano-SiO2 is found to be the most significant.

10.
Nanomaterials (Basel) ; 10(5)2020 May 08.
Article in English | MEDLINE | ID: mdl-32397099

ABSTRACT

The NOx degradation performance of nano-TiO2 as a coating material for the road environment was evaluated in this research. The nano-TiO2 coating materials for both road surface and roadside were prepared by using anatase nano-TiO2, activated carbon powder, silane coupling agent and deionized water. The impact of varying amounts of coating material and silane coupling agent were evaluated. The road environment of NOx degradation was simulated by the photocatalytic test system designed by the research team. For the road surface coating, the photocatalytic degradation experiments of NO under different radiation intensities were carried out. The results show that the material has good photocatalytic degradation performance, and the proper amount of silane coupling agent can enhance the bonding performance of the material and asphalt mixture. For the roadside coating, sodium dodecylbenzene sulfonate was selected as the surfactant to carry out the photocatalytic degradation experiment of NO2 with different dosages of surfactant. The results showed that when the mass ratio of nano-TiO2 and surfactant was about 1:2, the catalytic degradation effect of the material was the best.

11.
Chem Sci ; 12(5): 1778-1782, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-34163939

ABSTRACT

Gold nanoparticles (AuNPs) have been prepared and surface-functionalized with a mixture of 1-hexanethiol co-ligands and chiral discogen ligands separated from a disulfide function via a flexible spacer. Polarized optical microscopy together with differential scanning calorimetry showed that the organic corona of the nanocomposite forms a stable chiral discotic nematic phase with a wide thermal range. Synchrotron X-ray diffraction showed that gold NPs form a superlattice with p2 plane symmetry. Analysis indicated that the organic corona takes up the shape of a flexible macrodisk. Synchrotron radiation-based circular dichroism signals of thin films are significantly enhanced on the isotropic-LC transition, in line with the formation of a chiral nematic phase of the organic corona. At lower temperatures the appearance of CD signals at longer wavelengths is associated with the chiral organisation of the NPs and is indicative of the formation of a second helical structure. The decreased volume required and the chiral environment of the disc ligands drives the nanoparticles into columns that arrange helically, parallel to the shortest axis of the two dimensional lattice.

12.
Polymers (Basel) ; 11(12)2019 Dec 14.
Article in English | MEDLINE | ID: mdl-31847369

ABSTRACT

Although asphalt-aggregate bonding provides contacting strength for hot mix asphalt (HMA), it is still ignorant in dynamic shear test, due to the only use of metal parallel plate. Modified parallel plates cored from different types of aggregate were provided to simulate aggregate-asphalt-aggregate (AAA) sandwich in HMA, aiming at the comprehensive interpretation on bonding's influence. This study began with an experimental design, aggregate plates, and joint clamps were processed to be installed into the rheometer. Aggregate type and loading conditions were set as essential variables. Subsequently, microscopic tests were utilized to obtain chemical components of aggregate, micro morphology of interface, and roughness of plates. The shearing tests for poly (styrene-butadiene-styrene)-modified asphalt were conducted in bonding with aggregate plates. Meanwhile, contrasting groups adopting metal plates followed the same experimental procedures. The results indicate that the influence of aggregate type on binder's rheological characteristics is dependent on the experimental variables, and microscopic characteristics and component differences should be taken into consideration when selecting aggregates in designing asphalt mixtures.

13.
Polymers (Basel) ; 11(8)2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31370317

ABSTRACT

Asphalt fine aggregate matrix (FAM) is a predominant component directly related to field performances of hot asphalt mix (HMA), it is necessary to investigate material properties of FAM. Prior to preparing FAM specimens, the asphalt content was calculated by keeping the filler-bitumen (FB) ratio the same as in the corresponding HMA. A non-destructive fabrication method instead of coring and cutting methods was developed to compact FAM cylinders, and the joint base was designed to be concentric with the loading axis of testing system. Rheological responses of FAM were studied using the dynamic shear rheometer (DSR). Two repeated tests prove that the FAM compactor and the jointed base meet the requirement of data validation. Results show that rheological performances of FAM are significantly affected by asphalt content, gradation, air void content, and testing frequency. Air void is concluded to be the decisive factor which influences the stability of FAM, and the fiber is demonstrated to play a role on enhancing the flow resistance of FAM-F even though with the richest asphalt content.

14.
Polymers (Basel) ; 11(7)2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31266171

ABSTRACT

Styrene Butadiene Styrene (SBS) polymer-modified asphalt binders have become widely used in asphalt pavement because of their advantages in high- and low-temperature performance and fatigue resistance. Asphalt pavement is inevitably exposed to sunlight and ultraviolet (UV) radiation during its construction and service life. However, consideration of the aging effect of UV radiation is still limited in current pavement design and evaluation systems. In order to evaluate the impact of UV radiation on the aging properties of SBS-modified asphalt binders, UV aging tests were performed on Rolling Thin Film Oven Test (RTFOT)-aged samples with different UV radiation intensities and aging times. Sixteen different groups of tests were conducted to compare the rheological properties and functional group characteristics of SBS-modified asphalt binders. Dynamic Shear Rheometer (DSR), Bending Beam Rheometer (BBR), FTIR, and SEM tests were conducted to evaluate the aging mechanisms in various UV aging conditions. The results found that UV radiation seriously destroys the network structure formed by the cross-linking effect in SBS-modified asphalt binders, which aggravates the degradation of SBS and results in a great change of rheological properties after UV aging. The nature of SBS-modified asphalt binder aging resulted from the degradation of SBS and the changes of asphalt binder base composition, which lead to the transformation of colloidal structure and the deterioration of asphalt binder performance. The tests also found that continuous UV radiation can increase shrinkage stress in the asphalt binder surface and leads to surface cracking of the asphalt binder.

15.
Materials (Basel) ; 12(9)2019 May 01.
Article in English | MEDLINE | ID: mdl-31052448

ABSTRACT

The slippage damage caused by weak interlaminar bonding between cement concrete deck and asphalt surface is a serious issue for bridge pavement. In order to evaluate the interlaminar bonding of cement concrete bridge deck and phosphorous slag (PS) asphalt pavement, the shear resistance properties of the bonding layer structure were studied through direct shear tests. The impact of PS as a substitute of asphalt mixture aggregate, interface characteristics, normal pressure, waterproof and cohesive layer types, temperature and shear rate on the interlaminar bonding properties were analyzed. The test results indicated that the interlaminar bonding of bridge deck pavement is improved after asphalt mixture fine aggregate was substituted with PS and PS powder, and the result indicated that the shear strength of grooved and aggregate-exposed interfaces is significantly higher than untreated interface, the PS micro-powder or anti-stripping agent can also improve the adhesion between layers when mixed into SBS asphalt. This study provided important theoretical and practical guidance for improving the shear stability of bridge deck pavement.

16.
Materials (Basel) ; 12(10)2019 May 27.
Article in English | MEDLINE | ID: mdl-31137786

ABSTRACT

Compaction is the most critical stage during pavement construction, but the real-time rheological behavior in the compaction process of hot mix asphalt has not received enough attention. Rheological properties directly reflect the of mixture performance, the intrinsic directly reflects the influencing factors of compaction, and the pavement compactness and service life. Therefore, it is important to interpret the rheological properties of the asphalt mixture during the compaction process. In this paper, the improved Nishihara model was used to study the viscoelastic-plastic properties of the hot mix asphalt in the compaction process. Firstly, the improved Nishihara model was briefly introduced. Subsequently, the stress and strain correlation curves are obtained by the MTS (Material Testing System) compaction test, and the strain-time curve is fitted to determine the model parameter values. Finally, the parameters are substituted into the constitutive equation to obtain the strain-time curve and compared it with the test curve. The results show that the improved Nishihara model effectively depicts the real time behavior of the asphalt mixture in the compaction progress. The viscos and plastic parameters present certain differences, which reflects that the gradation and temperature have certain influence on the compaction characteristics of the mixture.

17.
Chem Commun (Camb) ; 51(67): 13197-200, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26193915

ABSTRACT

A hierarchical meso- and microporous metal-organic framework (MOF) was facilely fabricated in an ionic liquid (IL)/supercritical CO2 (SC CO2)/surfactant emulsion system. Notably, CO2 exerts a dual effect during the synthesis; that is, CO2 droplets act as a template for the cores of nanospheres while CO2-swollen micelles induce mesopores on nanospheres.


Subject(s)
Carbon Dioxide/chemistry , Cobalt/chemistry , Ionic Liquids/chemistry , Micelles , Microscopy, Electron, Transmission , Models, Biological , Porosity , Surface-Active Agents
18.
ACS Appl Mater Interfaces ; 7(16): 8750-6, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-25859786

ABSTRACT

In this work, we report a simple method to fabricate smart polymers engineered with hierarchical photonic structures of Morpho butterfly wing to present high performance that are capable of color tunability over temperature. The materials were assembled by combining functional temperature responsivity of poly(N-isopropylacrylamide)-co-acrylic acid (PNIPAm-co-AAc) with the biological photonic crystal (PC) structure of Morpho butterfly wing, and then the synergistic effect between the functional polymer and the natural PC structure was created. Their cooperativity is instantiated in the phase transition of PNIPAm-co-AAc (varying with the change of temperature) that can alter the nanostructure of PCs, which further leads to the reversible spectrum response property of the modified hierarchical photonic structures. The cost-effective biomimetic technique presented here highlights the bright prospect of fabrication of more stimuli-responsive functional materials via coassembling smart polymers and biohierarchical structures, and it will be an important platform for the development of nanosmart biomaterials.


Subject(s)
Acrylamides/chemistry , Butterflies/anatomy & histology , Photons , Polymers/chemistry , Temperature , Wings, Animal/anatomy & histology , Animals , Crystallization , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , Wings, Animal/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...