Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Nutrients ; 16(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38732501

ABSTRACT

Obesity can lead to excessive lipid accumulation in non-adipose tissues, such as the liver and skeletal muscles, leading to ectopic lipid deposition and damaging target organ function through lipotoxicity. FGF-21 is a key factor in regulating lipid metabolism, so we aim to explore whether FGF-21 is involved in improving ectopic lipid deposition. We observed the characteristics of ectopic lipid deposition in the liver and skeletal muscles of obesity-resistant mice, detected the expression of FGF-21 and perilipin, and found that obesity-resistant mice showed a decrease in ectopic lipid deposition in the liver and skeletal muscles and increased expression of FGF-21. After inhibiting the expression of FGF-21, a more severe lipid deposition in liver cells and skeletal muscle cells was found. The results indicate that inhibiting FGF-21 can exacerbate ectopic lipid deposition via regulating lipid droplet synthesis and decomposition, as well as free fatty acid translocation and oxidation. In conclusion, FGF-21 is involved in improving ectopic lipid deposition caused by obesity in the liver and skeletal muscles.


Subject(s)
Fibroblast Growth Factors , Lipid Metabolism , Liver , Muscle, Skeletal , Obesity , Animals , Fibroblast Growth Factors/metabolism , Muscle, Skeletal/metabolism , Liver/metabolism , Mice , Obesity/metabolism , Male , Mice, Inbred C57BL , Perilipin-1/metabolism , Lipid Droplets/metabolism
2.
Adv Sci (Weinh) ; : e2401515, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654624

ABSTRACT

Self-powered pressure detection using smart wearable devices is the subject of intense research attention, which is intended to address the critical need for prolonged and uninterrupted operations. Current piezoelectric and triboelectric sensors well respond to dynamic stimuli while overlooking static stimuli. This study proposes a dual-response potentiometric pressure sensor that responds to both dynamic and static stimuli. The proposed sensor utilizes interdigital electrodes with MnO2/carbon/polyvinyl alcohol (PVA) as the cathode and conductive silver paste as the anode. The electrolyte layer incorporates a mixed hydrogel of PVA and phosphoric acid. The optimized interdigital electrodes and sandpaper-like microstructured surface of the hydrogel electrolyte contribute to enhanced performance by facilitating an increased contact area between the electrolyte and electrodes. The sensor features an open-circuit voltage of 0.927 V, a short-circuit current of 6 µA, a higher sensitivity of 14 mV/kPa, and outstanding cycling performance (>5000 cycles). It can accurately recognize letter writing and enable capacitor charging and LED lighting. Additionally, a data acquisition and display system employing the proposed sensor, which facilitates the monitoring of athletes' rehabilitation training, and machine learning algorithms that effectively guide rehabilitation actions are presented. This study offers novel solutions for the future development of smart wearable devices.

3.
Horm Metab Res ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38503312

ABSTRACT

Our previous study showed that elevated preoperative thyroglobulin (pre-Tg) level predicted the risk of developing radioiodine refractory in PTC patients. In the present study, we aimed to evaluate the prognostic value of pre-Tg in papillary thyroid microcarcinoma (PTMC). After a specific inclusion and exclusion criteria were applied, a total of 788 PTMCs were enrolled from Jiangyuan Hospital affiliated to Jiangsu Institute of Nuclear Medicine between Jan 2015 and Dec 2019. Among them, 107 PTMCs were treated with radioiodine therapy (RAIT) and the response to therapy was grouped as excellent response (ER), and non-excellent response (NER: indeterminate response, IDR and biochemical incomplete response, BIR). Multivariable logistic regression was used to identify predictors for the response of RAIT in PTMCs. Higher pre-Tg levels were detected in PTMCs with RAIT as compared with PTMCs without RAIT (p=0.0018). Higher levels of pre-Tg were also found in patients with repeated RAIT as compared with patients with single RAIT (p<0.0001). Furthermore, pre-Tg level was higher in PTMC with IDR (n=16) and much higher in BIR (n=9) as compared with patients with ER (n=82, p=0.0003) after RAIT. Multivariate analysis showed that pre-Tg level over 16.79 ng/ml [OR: 6.55 (2.10-20.39), p=0.001] was the only independent predictor for NER in PTMC with RAIT. We found that high level of pre-Tg predicted a poor RAIT outcome in PTMC. Our finding explores a prospective way in identifying high-risk PTMCs with poor response to RAIT.

4.
Angew Chem Int Ed Engl ; 63(16): e202401394, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38396356

ABSTRACT

Carbohydrates play pivotal roles in an array of essential biological processes and are consequently involved in many diseases. To meet the needs of glycobiology research, chemical enzymatic and non-enzymatic methods have been developed to generate glycoconjugates with well-defined structures. Herein, harnessing the unique properties of C6-oxidized glycans, we report a straightforward and robust strategy for site- and stereoselective glycomodification of biomolecules with N-terminal tryptophan residues by a carbohydrate-promoted Pictet-Spengler reaction, which is not adapted to typical aldehyde substrates under biocompatible conditions. This method reliably delivers highly homogeneous glycoconjugates with stable linkages and thus has great potential for functional modulation of peptides and proteins in glycobiology research. Moreover, this reaction can be performed at the glycosites of glycopeptides, glycoproteins and living-cell surfaces in a site-specific manner. Control experiments indicated that the protected α-O atom of aldehyde donors and free N-H bond of the tryptamine motif are crucial for this reaction. Mechanistic investigations demonstrated that the reaction exhibited a first-order dependence on both tryptophan and glycan, and deprotonation/rearomatization of the pentahydro-ß-carbolinium ion intermediate might be the rate-determining step.


Subject(s)
Carbohydrates , Tryptophan , Tryptophan/chemistry , Proteins/chemistry , Aldehydes/chemistry , Polysaccharides , Glycoconjugates
5.
Am J Clin Nutr ; 119(1): 100-107, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992969

ABSTRACT

BACKGROUND: Adult-onset asthma (AOA) and cardiovascular diseases shared common risk factors and similar pathophysiologic resemblances. The American Heart Association (AHA) unveiled the life's essential 8 (LE8) to promote cardiovascular health (CVH). This study aimed to assess the overall impact of LE8 implementation on AOA prevention. METHODS: According to the guideline of AHA's Construct of CVH in 2022, LE8 score was calculated from 8 health status concerning diet, physical activity, nicotine exposure, sleep health, body mass index, blood lipids, blood glucose, and blood pressure. Cox proportional-hazards models were used to estimate effect sizes of associations between CVH, asthma genetic risk, and risk of incident AOA in participants selected from the UK Biobank study. RESULTS: A total of 6180 incident AOA cases occurred in 249,713 participants during an average of 11.60 y' follow-up. A higher LE8 score was associated with a lower risk of incident AOA with a significant linear trend (P < 0.0001). Every standard deviation increment of LE8 was associated with a 17% (HR: 0.83; 95% CI: 0.81, 0.85) lower risk of incident AOA. Compared with participants with low-CVH score, participants with moderate (HR: 0.72; 95% CI: 0.67, 0.78) and high CVH scores (HR: 0.52; 95% CI: 0.47, 0.58) were associated with a lower risk of incident AOA (P-trend < 0.0001). No significant multiplicative or additive interaction was found between LE8 score and genetic risks. Stratified analysis showed a consistent association between CVH and risk of incident AOA across different asthma polygenic risk score (PRS) levels. Compared with participants with high PRS and low CVH, participants with low PRS and high CVH experienced the lowest risk (HR: 0.28; 95% CI: 0.23, 0.34) of incident AOA. CONCLUSIONS: Our findings suggest that maintaining optimal CVH should be recommended as a preventive strategy for AOA, regardless of their asthma genetic risks.


Subject(s)
Asthma , Cardiovascular Diseases , Adult , United States/epidemiology , Humans , Prospective Studies , Risk Factors , Cardiovascular Diseases/prevention & control , Genetic Predisposition to Disease , Asthma/epidemiology , Asthma/genetics
6.
Exp Clin Endocrinol Diabetes ; 131(11): 577-582, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37922948

ABSTRACT

OBJECTIVE: To assess the prognostic value of clinicopathological factors as well as BRAF and TERT promoter mutations in predicting distant metastasis in patients with papillary thyroid cancer. DESIGN: The status of BRAF and TERTp mutations were available in 1,208 thyroid cancer patients who received thyroidectomy at Jiangyuan Hospital Affiliated to Jiangsu Institute of Nuclear Medicine from January 2008 to December 2021. Based on inclusion criteria, 99 distant metastasis thyroid cancers (DM-TCs) and 1055 patients without DM (Non-DM-TCs) were retrospectively reviewed. RESULTS: After univariate and multivariate analyses, a risk model was established for DM prediction based on factors: T3/T4 stage, lymph node metastasis (LNM) number over 5, and BRAF/TERT mutations (TLBT). It was defined based on the number of TLBT factors: low risk (no risk factor, n=896), intermediate risk (1 risk factor, n=199), and high risk (≥2 risk factors, n=59). Notably, compared with patients with low and intermediate risks, patients assigned to high TLBT risk have a shorter time of DM disease-free survival. Except for gene mutation, other factors were also included in the 2015 American Thyroid Association (ATA) risk guideline. Comparing with the ATA risk category, this risk model showed a better performance in predicting DM-TCs. CONCLUSIONS: This study proposes a TLBT risk classifier consisting of T3/T4 stages, LNM (n>5), and BRAF+TERTp mutations for predicting DM-TCs. TLBT risk stratification may help clinicians make personalized treatment management and follow-up strategies.


Subject(s)
Telomerase , Thyroid Neoplasms , Humans , Proto-Oncogene Proteins B-raf/genetics , Retrospective Studies , Telomerase/genetics , Promoter Regions, Genetic/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/therapy , Thyroid Neoplasms/pathology , Mutation
7.
Food Res Int ; 172: 113139, 2023 10.
Article in English | MEDLINE | ID: mdl-37689903

ABSTRACT

Light-flavor Baijiu fermentation is a typical spontaneous solid-state fermentation process fueled by a variety of microorganisms. Mechanized processes have been increasingly employed in Baijiu production to replace traditional manual operation processes, however, the microbiological and physicochemical dynamics in mechanized processes remain largely unknown. Here, we investigated the microbial community succession and flavor compound formation during a whole mechanized fermentation process of light-flavor Baijiu using the conventional dilution plating method, PacBio single-molecule real-time (SMRT) sequencing and headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. The results showed that largely different fungal and bacterial communities were involved in the soaking and fermentation processes. A clear succession from Pantoea agglomerans to Bacillus (B.) smithii and B. coagulans in dominant bacterial species and from Cladosporium exasperatum to Saccharomyces cerevisiae and Lichtheimia ramosa in dominant fungal species occurred in the soaking processes. In the fermentation process, the most dominant bacterial species was shifted from Pantoea agglomerans to Lactobacillus (La.) acetotolerans and the most dominant fungal species were shifted from Lichtheimia ramose and Rhizopus arrhizus to Saccharomyces cerevisiae. The bacterial and fungal species positively associated with acidity and the formation of ethanol and different flavor compounds were specified. The microbial species exhibited strong co-occurrence or co-exclusion relationships were also identified. The results are helpful for the improvement of mechanized fermentation process of light-flavor Baijiu production.


Subject(s)
Bacillus , Microbiota , Pantoea , Saccharomyces cerevisiae , Fermentation , Ethanol
8.
Front Genet ; 14: 1243730, 2023.
Article in English | MEDLINE | ID: mdl-37554407

ABSTRACT

Previous studies demonstrated Y chromosome haplogroup C2a-M48-SK1061 is the only founding paternal lineage of all Tungusic-speaking populations. To infer the differentiation history of these populations, we studied more sequences and constructed downstream structure of haplogroup C2a-M48-SK1061 with better resolution. In this study, we generated 100 new sequences and co-analyzed 140 sequences of C2a-M48-SK1061 to reconstruct a highly revised phylogenetic tree with age estimates. We also performed the analysis of the geographical distribution and spatial autocorrelation of sub-branches. Dozens of new sub-branches were discovered, many sub-branches were nearly unique for Ewenki, Evens, Oroqen, Xibe, Manchu, Daur, and Mongolian. The topology of these unique sub-branches is the key evidence for understanding the complex evolutionary relationship between different Tungusic-speaking populations. The revised phylogeny provided a clear pattern for the differentiation history of haplogroup C2a-M48-SK1061 in the past 2,000 years. This study showed that the divergence pattern of founder lineage is essential to understanding the differentiation history of populations.

9.
Vaccine ; 41(38): 5648-5654, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37544826

ABSTRACT

SARS-CoV-2 vaccination has been reported to be associated with the induction of thyroid disorders. To investigate the influence of SARS-CoV-2 vaccination on the disease course of patients who were undergoing treatment for Graves' disease (GD), a total of 651 consecutive GD patients who attended follow-up visits in Jiangyuan Hospital were enrolled in this retrospective study, including 443 inactivated SARS-CoV-2 vaccine recipients and 208 unvaccinated participants. The changes in serum levels of free triiodothyronine (fT3), free thyroxine (fT4), thyroid stimulating hormone (TSH) and TSH receptor antibody (TRAb) were analyzed. Crude and adjusted hazard ratios (HRs) were estimated using Cox regression models to investigate the risks in incident TRAb positivity and hyperthyroidism recurrence following vaccination. The median levels of TRAb and fT3 significantly decreased in both vaccinated and unvaccinated groups during the GD hyperthyroidism treatment. The fT4 levels of both groups were well within normal limits and presented downward trends simultaneously. Although the present study observed an increasing trend of TSH level during follow-up, significant difference was not seen in both vaccinated and unvaccinated groups. Except for newly diagnosed GD patients, vaccinated participants had significantly lower risks of incident TRAb positivity (adjusted HR = 0.22; 95%CI: 0.10-0.48, P < 0.001) after adjusted for sex, age, disease duration and MMI dose at baseline. Besides, vaccination was unlikely to serve as a risk factor for hyperthyroidism recurrence (adjusted HR = 1.20; 95%CI: 0.51-2.83, P = 0.678). Notably, newly diagnosed patients who received vaccination were just as likely to achieve remission of thyrotoxicosis as those not receiving the vaccination at any time. Our results concluded that inactivated SARS-CoV-2 vaccination would not disturb the treatment course among GD hyperthyroidism patients.


Subject(s)
COVID-19 , Graves Disease , Hyperthyroidism , Humans , COVID-19 Vaccines/therapeutic use , SARS-CoV-2 , Retrospective Studies , COVID-19/prevention & control , Graves Disease/complications , Graves Disease/drug therapy , Hyperthyroidism/complications , Cohort Studies , Thyrotropin/therapeutic use , Antibodies , Disease Progression
10.
Environ Pollut ; 335: 122298, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37536475

ABSTRACT

The development of single atom catalysts (SACs) with superior catalytic performance is a long-term goal for peroxymonosulfate (PMS) activation in advanced oxidation processes (AOPs). A novel SACs that single Co atoms anchored on CuO with enriched oxygen vacancies (Ov) is synthesized successfully by choosing a metal oxide as the carrier creatively. 100% of tetracycline (TC) can be removed by Co-CuO (Ov)/PMS system within 3 min. The corresponding reaction rate constant is 3.1068 min-1, which is much higher than that of CuO (Ov), ZIF-CoN4-C, Co-CuO (without Ov) and CoNP-CuO (Ov), respectively. Co(II) is the primary source of radical pathway (·OH and SO4·-), and its regeneration is promoted by Cu(Ⅰ). The enriched Ov is the major contribution to the nonradical pathway, which promotes the singlet oxygen (1O2) generation together with accelerates the electron transfer from TC to catalyst-PMS*. Besides, the Co-CuO (Ov) exhibits an excellent stability and anti-interference capability. This study highlights a novel strategy to promote PMS activation by incorporating the single metal atoms on a metal oxide carrier with defects to accelerate the redox of dominate metal and stabilize the metal atoms simultaneously, which may inform the design for the next generation of SACs in AOPs.


Subject(s)
Cobalt , Oxygen , Tetracycline , Anti-Bacterial Agents , Peroxides , Oxidation-Reduction , Oxides
11.
Endocr Pathol ; 34(3): 323-332, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37572175

ABSTRACT

Reliable preoperative diagnosis of thyroid nodules remained challenging because of the inconclusiveness of fine-needle aspiration (FNA) cytology. In the present study, 583 formalin-fixed paraffin embedded (FFPE) thyroid nodule tissues and 161 FNA specimens were enrolled retrospectively. Then BRAF V600E, EZH1 Q571R, SPOP P94R, and ZNF148 mutations among these samples were identified using Sanger sequencing. Based on this four-gene genomic classifier, we proposed a two-step modality to diagnose thyroid nodules to differentiate benign and malignant thyroid nodules. In the FFPE group, thyroid cancers were effectively diagnosed in 37.7% (220/583) of neoplasms by the primary BRAF V600E testing, and 15.7% (57/363) of thyroid nodules could be further determined as benign by subsequent EZH1 Q571R, SPOP P94R, and ZNF148 (we called them "ESZ") mutation testing. In the FNA group, 161 BRAF wild-type specimens were classified according to The Bethesda System for Reporting Thyroid Cytopathology (TBSRTC). A total of 7 mutated samples fell within Bethesda categories III-IV, and the mutation rate of "ESZ" in Bethesda III-IV categories was 8.4%. The two-step genomic classifier could further improve thyroid nodule diagnosis, which may inform more optimal patient management.


Subject(s)
Thyroid Neoplasms , Thyroid Nodule , Humans , Thyroid Nodule/diagnosis , Thyroid Nodule/genetics , Thyroid Nodule/pathology , Proto-Oncogene Proteins B-raf/genetics , Retrospective Studies , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Mutation , DNA Mutational Analysis , Polycomb Repressive Complex 2/genetics , DNA-Binding Proteins/genetics , Transcription Factors/genetics
12.
Toxicol In Vitro ; 93: 105669, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37634662

ABSTRACT

Thyroid cancer is one of the most common endocrine malignancies. Differentiated thyroid cancer (DTC) treatment is based on the ability of thyroid follicular cells to accumulate radioactive iodide (RAI). DTC generally has a good prognosis. However, tumor dedifferentiation or defect in certain cell death mechanism occurs in a subset of DTC patients, leading to RAI resistance. Therefore, developing novel therapeutic approaches that enhance RAI sensitivity are still warranted. We found that curcumin, an active ingredient in turmeric with anti-cancer properties, rapidly accumulated in the mitochondria of thyroid cancer cells but not normal epithelial cells. Curcumin treatment triggered mitochondrial membrane depolarization, engulfment of mitochondria within autophagosomes and a robust decrease in mitochondrial mass and proteins, indicating that curcumin selectively induced mitophagy in thyroid cancer cells. In addition, curcumin-induced mitophagic cell death and its synergistic cytotoxic effect with radioiodine could be attenuated by autophagy inhibitor, 3-methyladenine (3-MA). Interestingly, the mechanism of mitophagy-inducing potential of curcumin was its unique mitochondria-targeting property, which induced a burst of SDH activity and excessive ROS production. Our data suggest that curcumin induces mitochondrial dysfunction and triggers lethal mitophagy, which synergizes with radioiodine to kill thyroid cancer cells.


Subject(s)
Curcumin , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/drug therapy , Curcumin/pharmacology , Iodine Radioisotopes , Succinate Dehydrogenase/metabolism , Mitophagy , Cell Line, Tumor , Thyroid Neoplasms/radiotherapy , Thyroid Neoplasms/drug therapy , Mitochondria/metabolism
13.
Mol Genet Genomics ; 298(6): 1301-1308, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37498359

ABSTRACT

OBJECTIVES: Previous studies suggested that the Y-chromosome haplogroups O2-N6-B451-AM01756 and O1a-M119 are two founder lineages of proto-Austronesians at about five thousand years ago. The objective of this study was to investigate the formation of proto-Austronesians from the perspective of the paternal gene pool. MATERIALS AND METHODS: In this study, we developed a highly evised phylogenetic tree with age estimates for haplogroup O2-N6 and early branches of O1a-M119 (M110, F1036, and F819). In addition, we also explored the geographical distribution of eight sub-branches of O2-N6 and O1a-M119, and spatial autocorrelation analysis was conducted for each sub-branch. RESULTS: The paternal lineage combination of proto-Austronesians is a small subset of a diverse gene pool of populations from the mainland of East Asia. The distribution map and results of the spatial autocorrelation analysis suggested that the eastern coastal region of northern China is likely the source of lineage O2-N6 while the coastal region of southeastern China is likely the diffusion center of early branches of O1a-M119. We developed an evolutionary diagram for Austronesians and their ancestors in the past 18,000 years. DISCUSSION: We proposed that the millet farming community in North China is the common ancestor group of the Austronesians and the Han people, while the diverse ancient people in the southeast coastal areas of East Asia form the common ancestor group of the Austronesians and the East Asian mainland population. The demographic history of multiple ancestral groups of the most recent common ancestor group itself in the more ancient period is helpful to understand the deep roots of the genetic components and cultural traditions of Austronesians.


Subject(s)
Chromosomes, Human, Y , Genetics, Population , Humans , Phylogeography , Phylogeny , Haplotypes/genetics , Chromosomes, Human, Y/genetics , Asia, Eastern
14.
Chemosphere ; 336: 139200, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37321456

ABSTRACT

A high-performance, durable, low-cost, and environmentally friendly catalyst is highly desired in advanced oxidation processes (AOPs) for water treatment. Considering the activity of Mn(Ⅲ) and the superior catalytic properties of reduced graphene oxide (rGO) in peroxymonosulfate (PMS) activation, rGO-modified MnOOH nanowires (MnOOH-rGO) were fabricated by a hydrothermal method for phenol degradation. The results showed that the composite synthesized at 120 °C with 1 wt% rGO dopant exhibited the best performance for phenol degradation. Nearly 100% of the phenol was removed by MnOOH-rGO within 30 min, which is higher than the removal rate of pure MnOOH (70%). The effects of catalyst dosages, PMS concentration, pH, temperature, and anions (Cl-, NO3-, HPO42-and HCO3-) on phenol degradation were investigated. The removal rate of chemical oxygen demand (COD) reached 26.4%, with a low molar ratio of PMS to phenol at 5:1 and a high PMS utilization efficiency (PUE) of 88.8%. The phenol removal rate remained more than 90% after five recycle with less than 0.1 mg L-1 leakage of manganese ions. Together with the results of radical quenching experiments, X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance spectroscopy (EPR), electron transfer and 1O2 were proved to dominate the activation process. During the direct electrons transfer process, the electrons transfer from the phenol to PMS by using the Mn(Ⅲ) as the mediate with a stoichiometric ratio between PMS and phenol at 1:2, which mainly contributed to the high PUE. This work provides new insight into a high-performance Mn(Ⅲ) based catalyst on PMS activation with high PUE, good reusability, and environmentally friendly for removing organic pollutants.


Subject(s)
Peroxides , Phenol , Peroxides/chemistry , Phenol/chemistry , Phenols
15.
Pathol Res Pract ; 246: 154495, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37172523

ABSTRACT

BACKGROUND: Due to dedifferentiation of tumor cells, manifested by a decreased expression of iodide-handling genes in thyrocytes, some thyroid carcinomas lose their capability for radioiodine concentration and gradually develop radioactive iodine (RAI) resistance. This work aimed to investigate the role of tumor microenvironment (TME) in the process of tumor cell dedifferentiation. MATERIALS AND METHODS: Bioinformatic analyses and subsequent immunohistochemistry (IHC) and western blot assays were performed in papillary thyroid carcinoma (PTC) and matched normal tissue. ELISA was used to assess the secretion of cytokines under the stimulation of pharmacological endoplasmic reticulum (ER) stress inducer. RESULTS: Higher levels of pro-inflammatory cytokines, interleukin 6 (IL-6) and (C-X-C motif chemokine ligand 8 (CXCL8), were found in thyroid cancer tissues compared with matched normal tissues. ER stress, induced by stressful environmental stimuli, such as nutrient deprivation and hypoxia, occurred in thyroid tumors. Classic ER stress inducers, thapsigargin (Tg) and tunicamycin (Tm), promoted the expression of IL6 and CXCL8 in thyroid cancer cells at mRNA and protein levels. Of note, rIL-6 and rCXCL8 promoted the dedifferentiation of thyroid cancer cells or even non-transformed cells in an autocrine/paracrine manner, weakening radioiodine uptake ability of thyroid cancer cells. Intriguingly, sorafenib, a multiple kinase inhibitor (MKI), could potently suppress not only ER stress-induced but also basal expressions of IL-6 and CXCL8 in thyroid cancer cells. CONCLUSIONS: The inflammatory TME could regulate cell dedifferentiation, leading to loss of thyroid-specific gene expressions, through reciprocal interaction between thyroid tumor cells and follicular cells. Our study provides a new perspective on the mechanisms of how inflammatory TME affects DTC dedifferentiation.


Subject(s)
Thyroid Neoplasms , Humans , Thyroid Neoplasms/pathology , Iodine Radioisotopes , Iodides , Interleukin-6 , Tumor Microenvironment
16.
Front Genet ; 14: 1139722, 2023.
Article in English | MEDLINE | ID: mdl-36968599

ABSTRACT

Objectives: Previous studies of archaeology and history suggested that the rise and prosperity of Bronze Age culture in East Asia had made essential contribution to the formation of early state and civilization in this region. However, the impacts in perspective of genetics remain ambiguous. Previous genetic researches indicated the Y-chromosome Q1a1a-M120 and N1a2a-F1101 may be the two most important paternal lineages among the Bronze Age people in ancient northwest China. Here, we investigated the 9,000-years history of haplogroup N1a2a-F1101 with revised phylogenetic tree and spatial autocorrelation analysis. Materials and Methods: In this study, 229 sequences of N1a2a-F1101 were analyzed. We developed a highly-revised phylogenetic tree with age estimates for N1a2a-F1101. In addition, we also explored the geographical distribution of sub-lineages of N1a2a-F1101, and spatial autocorrelation analysis was conducted for each sub-branch. Results: The initial differentiation location of N1a2a-F1101 and its most closely related branch, N1a2b-P43, a major lineage of Uralic-speaking populations in northern Eurasia, is likely the west part of northeast China. After ~4 thousand years of bottleneck effect period, haplgroup N1a2a-F1101 experienced continuous expansion during the Chalcolithic age (~ 4.5 kya to 4 kya) and Bronze age (~ 4 kya to 2.5 kya) in northern China. Ancient DNA evidence supported that this haplogroup is the lineage of ruling family of Zhou Dynasty (~ 3 kya-2.2 kya) of ancient China. Discussion: In general, we proposed that the Bronze Age people in the border area between the eastern Eurasian steppe and northern China not only played a key role in promoting the early state and civilization of China, but also left significant traces in the gene pool of Chinese people.

17.
Metabolites ; 12(11)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36422269

ABSTRACT

The conversion of white adipocytes into brown adipocytes improves their thermogenesis and promotes energy consumption. Epigenetic modifications affect related genes and interfere with energy metabolism, and these are the basis of new ideas for obesity treatment. Neonatal mice show high levels of DNA hypermethylation in white adipose tissue early in life and low levels in brown adipose tissue. Thus, we considered that the regulation of DNA methylation may play a role in the conversion of white adipose to brown. We observed growth indicators, lipid droplets of adipocytes, brown fat specific protein, and miRNA-133a after treatment with 5-Aza-2'-deoxycytidine. The expression of Prdm16 and Ucp-1 in adipocytes was detected after inhibiting miRNA-133a. The results showed a decrease in total lipid droplet formation and an increased expression of the brown fat specific proteins Prdm16 and Ucp-1. This study indicated that 5-Aza-2'-deoxycytidine promotes white adipocyte browning following DNA demethylation, possibly via the modulation of miR-133a and Prdm16.

18.
Cancer Chemother Pharmacol ; 90(1): 71-82, 2022 07.
Article in English | MEDLINE | ID: mdl-35799067

ABSTRACT

PURPOSE: Orally administered paclitaxel offers increased patient convenience while providing a method to prolong exposure without long continuous, or repeated, intravenous infusions. The oral bioavailability of paclitaxel is improved through co-administration with ritonavir and application of a suitable pharmaceutical formulation, which addresses the dissolution-limited absorption of paclitaxel. We aimed to characterize the pharmacokinetics of different paclitaxel formulations, co-administered with ritonavir, and to investigate a pharmacodynamic relationship between low-dose metronomic (LDM) treatment with oral paclitaxel and the anti-angiogenic marker thrombospondin-1 (TSP-1). METHODS: Fifty-eight patients treated with different oral paclitaxel formulations were included for pharmacokinetic analysis. Pharmacodynamic data was available for 36 patients. All population pharmacokinetic/pharmacodynamic modelling was performed using non-linear mixed-effects modelling. RESULTS: A pharmacokinetic model consisting of gut, liver, central, and peripheral compartments was developed for paclitaxel. The gastrointestinal absorption rate was modelled with a Weibull function. Relative gut bioavailabilities of the tablet and capsule formulations, as fractions of the gut bioavailability of the drinking solution, were estimated to be 0.97 (95%CI: 0.67-1.33) and 0.46 (95%CI: 0.34-0.61), respectively. The pharmacokinetic/pharmacodynamic relationship between paclitaxel and TSP-1 was modelled using a turnover model with paclitaxel plasma concentrations driving an increase in TSP-1 formation rate following an Emax relationship with an EC50 of 284 ng/mL (95%CI: 122-724). CONCLUSION: The developed pharmacokinetic model adequately described the paclitaxel plasma concentrations for the different oral formulations co-administered with ritonavir. This model, and the established pharmacokinetic/pharmacodynamic relationship with TSP-1, may facilitate future development of oral paclitaxel.


Subject(s)
Paclitaxel , Ritonavir , Administration, Oral , Biological Availability , Drug Compounding , Humans , Ritonavir/pharmacology , Thrombospondin 1
19.
CNS Drugs ; 36(3): 283-300, 2022 03.
Article in English | MEDLINE | ID: mdl-35233753

ABSTRACT

BACKGROUND: Ofatumumab, a fully human anti-CD20 monoclonal antibody indicated for the treatment of relapsing forms of multiple sclerosis (RMS), binds to a unique conformational epitope, thereby depleting B cells very efficiently and allowing subcutaneous administration at lower doses. OBJECTIVES: The aims were to characterize the relationship between ofatumumab concentration and B cell levels, including the effect of covariates such as body weight, age, or baseline B cell count, and use simulations to confirm the chosen therapeutic dose. METHODS: Graphical and regression analyses previously performed based on data from a dose-range finding study provided the B cell depletion target used in the present work. All available adult phase 2/3 data for ofatumumab in RMS patients were pooled to develop a population pharmacokinetics (PK)-B cell count model, using nonlinear mixed-effects modeling. The population PK-B cell model was used to simulate B cell depletion and repletion times and the effect of covariates on PK and B cell metrics, as well as the dose response across a range of subcutaneous ofatumumab monthly doses. RESULTS: The final PK-B cell model was developed using data from 1486 patients. The predetermined B cell target was best achieved and sustained with the 20-mg dose regimen, with median B cell count reaching 8 cells/µL in 11 days and negligible repletion between doses. Only weight had a significant effect on PK, which did not translate into any clinically relevant effect on B cell levels. CONCLUSION: The PK-B cell modeling confirms the dose chosen for the licensed ofatumumab regimen and demonstrates no requirement for dose adjustment based on adult patient characteristics.


Subject(s)
Multiple Sclerosis , Adult , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , B-Lymphocytes , Humans , Multiple Sclerosis/drug therapy , Recurrence
20.
Phytother Res ; 36(2): 938-950, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35076979

ABSTRACT

Capsaicin (CAP) is a well-known anti-cancer agent. Recently, we reported capsaicin-induced apoptosis in anaplastic thyroid cancer (ATC) cells. It is well accepted that the generation of cancer stem cells (CSCs) is responsible for the dedifferentiation of ATC, the most lethal subtype of thyroid cancer with highly dedifferentiation status. Whether CAP inhibited the ATC growth through targeting CSCs needed further investigation. In the present study, CAP was found to induce autophagy in ATC cells through TRPV1 activation and subsequent calcium influx. Meanwhile, CAP dose-dependently decreased the sphere formation capacity of ATC cells. The stemness-inhibitory effect of CAP was further by extreme limiting dilution analysis (ELDA). CAP significantly decreased the protein level of OCT4A in both 8505C and FRO cells. Furthermore, CAP-induced OCT4A degradation was reversed by autophagy inhibitors 3-MA and chloroquine, BAPTA-AM and capsazepine, but not proteasome inhibitor MG132. Collectively, our study firstly showed CAP suppressed the stemness of ATC cells partially via calcium-dependent autophagic degradation of OCT4A. Our study lent credence to the feasible application of capsaicin in limiting ATC stemness.


Subject(s)
Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Apoptosis , Autophagy , Capsaicin/pharmacology , Cell Line, Tumor , Humans , Lysosomes , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...