Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(10)2023 09 27.
Article in English | MEDLINE | ID: mdl-37896791

ABSTRACT

Cervical cancer, a major health concern among women worldwide, is closely linked to human papillomavirus (HPV) infection. This study explores the evolving landscape of HPV molecular epidemiology in Taiwan over a decade (2010-2020), where prophylactic HPV vaccination has been implemented since 2007. Analyzing data from 40,561 vaginal swab samples, with 42.0% testing positive for HPV, we reveal shifting trends in HPV genotype distribution and infection patterns. The 12 high-risk genotypes, in order of decreasing percentage, were HPV 52, 58, 16, 18, 51, 56, 39, 59, 33, 31, 45, and 35. The predominant genotypes were HPV 52, 58, and 16, accounting for over 70% of cases annually. The proportions of high-risk and non-high-risk HPV infections varied across age groups. High-risk infections predominated in sexually active individuals aged 30-50 and were mixed-type infections. The composition of high-risk HPV genotypes was generally stable over time; however, HPV31, 33, 39, and 51 significantly decreased over the decade. Of the strains, HPV31 and 33 are shielded by the nonavalent HPV vaccine. However, no reduction was noted for the other seven genotypes. This study offers valuable insights into the post-vaccine HPV epidemiology. Future investigations should delve into HPV vaccines' effects and their implications for cervical cancer prevention strategies. These findings underscore the need for continued surveillance and research to guide effective public health interventions targeting HPV-associated diseases.


Subject(s)
Papillomavirus Infections , Papillomavirus Vaccines , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/epidemiology , Uterine Cervical Neoplasms/prevention & control , Human Papillomavirus Viruses , Papillomavirus Infections/epidemiology , Papillomavirus Infections/prevention & control , Molecular Epidemiology , Papillomaviridae/genetics , Genotype , Human papillomavirus 31/genetics , Prevalence
2.
Diagnostics (Basel) ; 12(2)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35204505

ABSTRACT

The combination of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) spectra data and artificial intelligence (AI) has been introduced for rapid prediction on antibiotic susceptibility testing (AST) of Staphylococcus aureus. Based on the AI predictive probability, cases with probabilities between the low and high cut-offs are defined as being in the "grey zone". We aimed to investigate the underlying reasons of unconfident (grey zone) or wrong predictive AST. In total, 479 S. aureus isolates were collected and analyzed by MALDI-TOF, and AST prediction and standard AST were obtained in a tertiary medical center. The predictions were categorized as correct-prediction group, wrong-prediction group, and grey-zone group. We analyzed the association between the predictive results and the demographic data, spectral data, and strain types. For methicillin-resistant S. aureus (MRSA), a larger cefoxitin zone size was found in the wrong-prediction group. Multilocus sequence typing of the MRSA isolates in the grey-zone group revealed that uncommon strain types comprised 80%. Of the methicillin-susceptible S. aureus (MSSA) isolates in the grey-zone group, the majority (60%) comprised over 10 different strain types. In predicting AST based on MALDI-TOF AI, uncommon strains and high diversity contribute to suboptimal predictive performance.

3.
J Med Internet Res ; 24(1): e28036, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35076405

ABSTRACT

BACKGROUND: The use of artificial intelligence (AI) in the medical domain has attracted considerable research interest. Inference applications in the medical domain require energy-efficient AI models. In contrast to other types of data in visual AI, data from medical laboratories usually comprise features with strong signals. Numerous energy optimization techniques have been developed to relieve the burden on the hardware required to deploy a complex learning model. However, the energy efficiency levels of different AI models used for medical applications have not been studied. OBJECTIVE: The aim of this study was to explore and compare the energy efficiency levels of commonly used machine learning algorithms-logistic regression (LR), k-nearest neighbor, support vector machine, random forest (RF), and extreme gradient boosting (XGB) algorithms, as well as four different variants of neural network (NN) algorithms-when applied to clinical laboratory datasets. METHODS: We applied the aforementioned algorithms to two distinct clinical laboratory data sets: a mass spectrometry data set regarding Staphylococcus aureus for predicting methicillin resistance (3338 cases; 268 features) and a urinalysis data set for predicting Trichomonas vaginalis infection (839,164 cases; 9 features). We compared the performance of the nine inference algorithms in terms of accuracy, area under the receiver operating characteristic curve (AUROC), time consumption, and power consumption. The time and power consumption levels were determined using performance counter data from Intel Power Gadget 3.5. RESULTS: The experimental results indicated that the RF and XGB algorithms achieved the two highest AUROC values for both data sets (84.7% and 83.9%, respectively, for the mass spectrometry data set; 91.1% and 91.4%, respectively, for the urinalysis data set). The XGB and LR algorithms exhibited the shortest inference time for both data sets (0.47 milliseconds for both in the mass spectrometry data set; 0.39 and 0.47 milliseconds, respectively, for the urinalysis data set). Compared with the RF algorithm, the XGB and LR algorithms exhibited a 45% and 53%-60% reduction in inference time for the mass spectrometry and urinalysis data sets, respectively. In terms of energy efficiency, the XGB algorithm exhibited the lowest power consumption for the mass spectrometry data set (9.42 Watts) and the LR algorithm exhibited the lowest power consumption for the urinalysis data set (9.98 Watts). Compared with a five-hidden-layer NN, the XGB and LR algorithms achieved 16%-24% and 9%-13% lower power consumption levels for the mass spectrometry and urinalysis data sets, respectively. In all experiments, the XGB algorithm exhibited the best performance in terms of accuracy, run time, and energy efficiency. CONCLUSIONS: The XGB algorithm achieved balanced performance levels in terms of AUROC, run time, and energy efficiency for the two clinical laboratory data sets. Considering the energy constraints in real-world scenarios, the XGB algorithm is ideal for medical AI applications.


Subject(s)
Artificial Intelligence , Laboratories, Clinical , Algorithms , Conservation of Energy Resources , Humans , Machine Learning
4.
Biomedicines ; 11(1)2022 Dec 25.
Article in English | MEDLINE | ID: mdl-36672552

ABSTRACT

Mycobacterium abscessus complex (MABC) has been reported to cause complicated infections. Subspecies identification of MABC is crucial for adequate treatment due to different antimicrobial resistance properties amid subspecies. However, long incubation days are needed for the traditional antibiotic susceptibility testing (AST). Delayed effective antibiotics administration often causes unfavorable outcomes. Thus, we proposed a novel approach to identify subspecies and potential antibiotic resistance, guiding early and accurate treatment. Subspecies of MABC isolates were determined by secA1, rpoB, and hsp65. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) spectra were analyzed, and informative peaks were detected by random forest (RF) importance. Machine learning (ML) algorithms were used to build models for classifying MABC subspecies based on spectrum. The models were validated by repeated five-fold cross-validation to avoid over-fitting. In total, 102 MABC isolates (52 subspecies abscessus and 50 subspecies massiliense) were analyzed. Top informative peaks including m/z 6715, 4739, etc. were identified. RF model attained AUROC of 0.9166 (95% CI: 0.9072-0.9196) and outperformed other algorithms in discriminating abscessus from massiliense. We developed a MALDI-TOF based ML model for rapid and accurate MABC subspecies identification. Due to the significant correlation between subspecies and corresponding antibiotics resistance, this diagnostic tool guides a more precise and timelier MABC subspecies-specific treatment.

5.
Sci Rep ; 11(1): 11615, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34079035

ABSTRACT

This study analysed the clinical patterns and outcomes of elderly patients with organophosphate intoxication. A total of 71 elderly patients with organophosphate poisoning were seen between 2008 and 2017. Patients were stratified into two subgroups: survivors (n = 57) or nonsurvivors (n = 14). Chlorpyrifos accounted for 33.8% of the cases, followed by methamidophos (12.7%) and mevinphos (11.3%). Mood, adjustment and psychotic disorder were noted in 39.4%, 33.8% and 2.8% of patients, respectively. All patients were treated with atropine and pralidoxime therapies. Acute cholinergic crisis developed in all cases (100.0%). The complications included respiratory failure (52.1%), aspiration pneumonia (50.7%), acute kidney injury (43.7%), severe consciousness disturbance (25.4%), shock (14.1%) and seizures (4.2%). Some patients also developed intermediate syndrome (15.5%) and delayed neuropathy (4.2%). The nonsurvivors suffered higher rates of hypotension (P < 0.001), shock (P < 0.001) and kidney injury (P = 0.001) than survivors did. Kaplan-Meier analysis indicated that patients with shock suffered lower cumulative survival than did patients without shock (log-rank test, P < 0.001). In a multivariate-Cox-regression model, shock was a significant predictor of mortality after intoxication (odds ratio 18.182, 95% confidence interval 2.045-166.667, P = 0.009). The mortality rate was 19.7%. Acute cholinergic crisis, intermediate syndrome, and delayed neuropathy developed in 100.0%, 15.5%, and 4.2% of patients, respectively.


Subject(s)
Acute Kidney Injury/drug therapy , Antidotes/therapeutic use , Insecticides/toxicity , Organophosphate Poisoning/drug therapy , Pneumonia, Aspiration/drug therapy , Respiratory Insufficiency/drug therapy , Acute Kidney Injury/chemically induced , Acute Kidney Injury/mortality , Acute Kidney Injury/physiopathology , Affect/drug effects , Aged , Atropine/therapeutic use , Chlorpyrifos/antagonists & inhibitors , Chlorpyrifos/toxicity , Female , Humans , Insecticides/antagonists & inhibitors , Male , Mevinphos/antagonists & inhibitors , Mevinphos/toxicity , Middle Aged , Organophosphate Poisoning/etiology , Organophosphate Poisoning/mortality , Organophosphate Poisoning/physiopathology , Organothiophosphorus Compounds/antagonists & inhibitors , Organothiophosphorus Compounds/toxicity , Pneumonia, Aspiration/chemically induced , Pneumonia, Aspiration/mortality , Pneumonia, Aspiration/physiopathology , Pralidoxime Compounds/therapeutic use , Psychotic Disorders/drug therapy , Psychotic Disorders/etiology , Psychotic Disorders/mortality , Psychotic Disorders/physiopathology , Respiratory Insufficiency/chemically induced , Respiratory Insufficiency/mortality , Respiratory Insufficiency/physiopathology , Retrospective Studies , Seizures/chemically induced , Seizures/drug therapy , Seizures/mortality , Seizures/physiopathology , Shock/chemically induced , Shock/drug therapy , Shock/mortality , Shock/physiopathology , Survival Analysis , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...