Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 58(81): 11430-11433, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36134562

ABSTRACT

A novel thio-Ritter-type reaction of alkyl bromides, nitriles, and hydrogen sulfide has been explored, providing a straightforward approach toward functionally important thioamides. This transformation features a broad substrate scope, operational simplicity, use of available feedstock chemicals, and late-stage functionalizations of bioactive molecules. The reaction mechanism is also proposed.


Subject(s)
Hydrogen Sulfide , Thioamides , Bromides , Molecular Structure , Nitriles/chemistry , Thioamides/chemistry
2.
Inorg Chem ; 54(6): 2643-51, 2015 Mar 16.
Article in English | MEDLINE | ID: mdl-25723777

ABSTRACT

In this manuscript, we present a simple route to enhance upconversion (UC) emission by producing two different coordination sites of trivalent cations in a matrix material and adjusting crystal field asymmetry by Hf(4+) co-doping. A cubic phase, Y3.2Al0.32Yb0.4Er0.08F12, with these structural characteristics was synthesized successfully by introducing a small ion (Al(3+)) into YF3. X-ray diffraction (XRD), nuclear magnetic resonance (NMR), transmission electron microscopy (TEM), X-ray spectroscopy (XPS), and fluorescence spectrophotometry (FS) were employed for its crystalline structure and luminescent property analysis. As a result, the coordination environments of the rare-earth ions were varied more obviously than a hexagonal NaYF4 matrix with the same Hf(4+) co-doping concentration, with vertical comparison, UC luminescent intensities of cubic Y3.2Al0.32Yb0.4Er0.08F12 were largely enhanced (∼32-80 times greater than that of different band emissions), while the maximum enhancement of hexagonal NaYF4 was by a factor of ∼12. According to our experimental results, the mechanism has been demonstrated involving the crystalline structure, crystal field asymmetry, luminescence lifetime, hypersensitive transition, and so on. The study may be helpful for the design and fabrication of high-performance UC materials.


Subject(s)
Metals, Rare Earth/chemistry , Crystallography, X-Ray , Luminescent Measurements , Models, Molecular , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...