Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Cancer ; 21(1): 393, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33838662

ABSTRACT

BACKGROUND: Majority of neuroblastoma patients develop metastatic disease at diagnosis and their prognosis is poor with current therapeutic approach. Major challenges are how to tackle the mechanisms responsible for tumorigenesis and metastasis. Human mesenchymal stem cells (hMSCs) may be actively involved in the constitution of cancer microenvironment. METHODS: An orthotopic neuroblastoma murine model was utilized to mimic the clinical scenario. Human neuroblastoma cell line SK-N-LP was transfected with luciferase gene, which were inoculated with/without hMSCs into the adrenal area of SCID-beige mice. The growth and metastasis of neuroblastoma was observed by using Xenogen IVIS 100 in vivo imaging and evaluating gross tumors ex vivo. The homing of hMSCs towards tumor was analyzed by tracing fluorescence signal tagged on hMSCs using CRI Maestro™ imaging system. RESULTS: hMSCs mixed with neuroblastoma cells significantly accelerated tumor growth and apparently enhanced metastasis of neuroblastoma in vivo. hMSCs could be recruited by primary tumor and also become part of the tumor microenvironment in the metastatic lesion. The metastatic potential was consistently reduced in lung and tumor when hMSCs were pre-treated with stromal cell derived factor-1 (SDF-1) blocker, AMD3100, suggesting that the SDF-1/CXCR4 axis was one of the prime movers in the metastatic process. CONCLUSIONS: hMSCs accelerated and facilitated tumor formation, growth and metastasis. Furthermore, the homing propensity of hMSCs towards both primary tumor and metastatic loci can also provide new therapeutic insights in utilizing bio-engineered hMSCs as vehicles for targeted anti-cancer therapy.


Subject(s)
Cell Communication , Mesenchymal Stem Cells/metabolism , Neuroblastoma/metabolism , Neuroblastoma/pathology , Animals , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Gene Expression , Genes, Reporter , Heterografts , Humans , Mesenchymal Stem Cell Transplantation , Mice , Mice, SCID , Neoplastic Processes , Neuroblastoma/etiology , Receptors, CXCR4/metabolism , Tumor Burden , Tumor Microenvironment
2.
Cancer Cell Int ; 19: 293, 2019.
Article in English | MEDLINE | ID: mdl-31807115

ABSTRACT

BACKGROUND: Although leukemic blast cells of Pro-B cell acute lymphoblastic leukemia (ALL) are arrested at the same stage of B cell differentiation, the immature B cell subtype is still biologically heterogeneous and is associated with diverse outcomes. This study aimed to explore the clinical-biological characteristics of pediatric pro-B ALL and factors associated with outcomes. METHODS: This study enrolled 121 pediatric patients aged 6 months to 14 years with newly diagnosed CD19+CD10- pro-B cell acute lymphoblastic leukemia (pro-B ALL) treated at Beijing Children's Hospital from March 2003 to October 2018. Genetic abnormalities, immunophenotypic markers, minimal residual disease (MRD) at early treatment stage and long-term outcomes of children treated on two consecutive protocols were analyzed. RESULTS: KMT2A rearrangements were the most frequent abnormalities (incidence rate 33.06%), and were associated with lower frequency of CD13, CD33, CD22 and CD34 expression and higher frequency of CD7 and NG2 expression. Higher frequency of CD15 and CD133 expression was found in KMT2A-AFF1 + patients, exclusively. Presence of CD15 and absence of CD34 at diagnosis correlated with the high burden of MRD at the early stage of treatment. Outcomes were more favorable in patients older than 1 year, with absence of CD20 expression and KMT2A rearrangements, and with MRD lower than 1% at the end of induction and 0.1% before consolidation. Increased intensity of chemotherapy based on MRD analysis did not improve outcomes significantly (5-year EFS 73.9 ± 6.5% for BCH-2003 and 76.1 ± 5.3% for CCLG-2008, P = 0.975). Independent adverse prognostic factors were MRD ≥ 0.1% before consolidation and presence of KMT2A gene rearrangements (odds ratios [ORs] 9.424 [95% confidence interval (CI) 3.210, 27.662; P < 0.001]; 4.142 [1.535, 11.715, P = 0.005]; respectively). CONCLUSIONS: Pediatric pro-B ALL is a heterogeneous disease. Genetic analysis and MRD evaluation can predict patients with dismal prognosis; however, intensive chemotherapy alone does not improve outcomes of these patients and targeted therapy or hematopoietic stem cell transplantation may be required.

3.
Stem Cells ; 34(4): 948-59, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26727165

ABSTRACT

How to enhance the homing of human mesenchymal stem cells (hMSCs) to the target tissues remains a clinical challenge nowadays. To overcome this barrier, the mechanism responsible for the hMSCs migration and engraftment has to be defined. Currently, the exact mechanism involved in migration and adhesion of hMSCs remains unknown. Exchange protein directly activated by cAMP (Epac), a novel protein discovered in cAMP signaling pathway, may have a potential role in regulating cells adhesion and migration by triggering the downstream Rap family signaling cascades. However, the exact role of Epac in cells homing is elusive. Our study evaluated the role of Epac in the homing of hMSCs. We confirmed that hMSCs expressed functional Epac and its activation enhanced the migration and adhesion of hMSCs significantly. The Epac activation was further found to be contributed directly to the chemotactic responses induced by stromal cell derived factor-1 (SDF-1) which is a known chemokine in regulating hMSCs homing. These findings suggested Epac is connected to the SDF-1 signaling cascades. In conclusion, our study revealed that Epac plays a role in hMSCs homing by promoting adhesion and migration. Appropriate manipulation of Epac may enhance the homing of hMSCs and facilitate their future clinical applications.


Subject(s)
Chemokine CXCL12/biosynthesis , Guanine Nucleotide Exchange Factors/biosynthesis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Cell Adhesion/genetics , Cell Movement/genetics , Chemokine CXCL12/genetics , Cyclic AMP/metabolism , Gene Expression Regulation, Developmental , Guanine Nucleotide Exchange Factors/genetics , Humans , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...