Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 354: 120459, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38402788

ABSTRACT

In recent years, there has been a marked increase in the production of excess sludge. Chain-elongation (CE) fermentation presents a promising approach for carbon resource recovery from sludge, enabling the transformation of carbon into medium-chain fatty acids (MCFAs). However, the impact of sulfate, commonly presents in sludge, on the CE process remains largely unexplored. In this study, batch tests for CE process of sludge anaerobic fermentation liquid (SAFL) under different SCOD/SO42- ratios were performed. The moderate sulfate reduction under the optimum SCOD/SO42- of 20:1 enhanced the n-caproate production, giving the maximum n-caproate concentration, selectivity and production rate of 5.49 g COD/L, 21.4% and 4.87 g COD/L/d, respectively. The excessive sulfate reduction under SCOD/SO42- ≤ 5 completely inhibited the CE process, resulting in almost no n-caproate generation. The variations in n-caproate production under different conditions of SCOD/SO42- were all well fitted with the modified Gompertz kinetic model. Alcaligenes and Ruminococcaceae_UCG-014 were the dominant genus-level biomarkers under moderate sulfate reduction (SCOD/SO42- = 20), which enhanced the n-caproate production by increasing the generation of acetyl-CoA and the hydrolysis of difficult biodegradable substances in SAFL. The findings presented in this work elucidate a strategy and provide a theoretical framework for the further enhancement of MCFAs production from excess sludge.


Subject(s)
Caproates , Sewage , Fermentation , Anaerobiosis , Fatty Acids, Volatile , Fatty Acids , Carbon
2.
Sci Total Environ ; 903: 166246, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37582448

ABSTRACT

Membrane bioreactor (MBR) and nanofiltration (NF) process has been attractive in wastewater reclamation, and was set as the target process in this study. Dissolved organic matter (DOM) and trace organic contaminants (TrOCs), closely associated with water safety, are noteworthy pollutants. Though the general DOM characteristics and TrOCs removal in MBR-NF reclamation process have been reported in lab-/pilot-scale experiment, the molecular characteristics of DOM revealed by high resolution mass spectrometry, and the correlation between DOM and TrOCs have been rarely studied in full-scale MBR-NF wastewater reclamation plant. In this work, biological and NF processes contributed significantly to the removal of DOM and TrOCs, while MBR filtration contributed slightly. Spectroscopic analyses revealed that DOM with higher aromaticity and lower molecular weight were more recalcitrant along the treatment. Aromatic protein-like substances were preferentially removed comparing to humic-like substances. Fourier transform ion cyclotron resonance mass spectrometry was applied to investigate DOM transformation at molecular level. DOM molecules with higher H/C and lower O/C, especially the aliphatics and peptides, were readily biodegraded into higher­oxygenate, highly unsaturated, and aromatic compounds. The generated species mainly included condensed aromatics, polyphenols, and highly unsaturated compounds. Filtration in MBR tended to reject higher oxygenated molecules. NF effectively removed most of the DOM molecules, especially higher oxygenated molecules with low H, N and S. The residual TrOCs in the NF effluent, including sulfamethoxazole, ofloxacin, and bisphenol A, still displayed above medium environmental risk. Significant correlations were found among organic compounds, spectral indices, and peptides molecules. Positive correlation between most of the TrOCs and several DOM parameters implied that they were synchronously removed in biological and membrane filtration processes. SUVA and FI might be potential indexes in monitoring the performance of MBR-NF process in both DOM and TrOC removal. These findings would expand the understanding of DOM and TrOCs behavior in wastewater reclamation process and simplify an in-depth system monitoring.

3.
Water Res ; 235: 119866, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36934542

ABSTRACT

Extracellular polymeric substances (EPS), with a stratified structure including tightly-bound EPS (TB-EPS), loosely-bound EPS (LB-EPS), and soluble EPS (S-EPS) surrounding the microbial cells, are known to vitally affect the physicochemical and biological functions of activated sludge in wastewater treatment. Polysaccharides (PS), proteins (PN), and humic acids (HA) are key components of EPS but their roles in constructing the multi-layer architecture are still unclear. This study explored the EPS characteristics in relation to the components using spectroscopic fingerprinting techniques. Ultraviolet-visible (UV-vis) spectra demonstrated stark difference between TB-EPS and other EPS. Fluorescence excitation-emission matrix (FEEM) and apparent quantum yield revealed further detailed differences. Fluorescence quotient analysis highlighted the dominance of TB-EPS, LB-EPS, and S-EPS in the excitation/emission wavelength (Ex/Em) region of Em = 350-400 nm, Em > 400 nm, and low-Stokes shift band (Em - Ex < 25 nm), respectively. Wavelength-wise prediction of the FEEM intensity was achieved through multiple linear regression against the chemical composition and variance partitioning analysis witnessed binary interactions of PS×HA and PS×PN in S-EPS, PN×HA and PS×PN in LB-EPS, and ternary interaction of PS×PN×HA in TB-EPS as well as the wavelength-specific fluorescence responses of these interactions. Further, X-ray photoelectron spectroscopy, infrared spectra, and circular dichroism spectra corroborated the differences in primary, secondary, and tertiary structures across the EPS layers. Ultrahigh-performance liquid chromatography-mass spectrometry detected molecular fragments confirming the multi-component hybridization among PS, PN, and HA. This study demonstrates a spectroscopic approach to sensitively fingerprint the fine structure of EPS, which has the potential for rapid monitoring of EPS and related sludge properties in wastewater treatment systems.


Subject(s)
Extracellular Polymeric Substance Matrix , Sewage , Sewage/chemistry , Extracellular Polymeric Substance Matrix/chemistry , Polysaccharides/analysis , Proteins/analysis , Spectrum Analysis
4.
Nanoscale ; 15(6): 2911-2923, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36692007

ABSTRACT

The improvement of Ag nanoparticles (AgNPs), in particular, loaded titania nanotubes, includes not only the antibacterial effect but also balancing the side effects from the antibacterial effect and osteogenesis properties, which can lead to an increased success rate of implants. Herein, based on the various needs of the graft to inhibit bacteria at different stages in vivo, we used a special osteogenic honeycomb-like "large tube over small tube" double-layered nanotube structure and created ultra-small-sized silver nanoparticles uniformly loaded on the surface and the interior of double-layer nanotubes by an optimized sputter coating method to ensure the time-dependent controllable release of antibacterial Ag ions from grafts and achieve the balance of the antibacterial effect and osteogenesis properties. The release of Ag+ from DNT-Ag8 was determined by inductively coupled plasma spectrometry. The release rate of Ag was slow; it was 30% on the first day and plateaued by the 19th day. Porphyromonas gingivalis adhesion and live bacteria were less abundant on the surface of DNT-Ag8, reaching an antibacterial efficiency of 55.6% in vitro. DNT-Ag8 shows a significantly higher antibacterial effect in a rat model infected with Staphylococcus aureus. An in vitro study demonstrated that DNT-Ag8 had no adverse effects on the adhesion, viability, proliferation, ALP staining, or activity assays of rat BMSCs. In contrast, it increased the expression of osteogenic genes. In vivo, DNT-Ag8 promoted bone-implant osseointegration in a beagle mandibular tooth loss model. This study demonstrated that the uniform loading of small-diameter silver nanoparticles using a honeycomb bilayer nanotube template structure is a promising method for modifying titanium surfaces to improve both bacteriostasis and osseointegration.


Subject(s)
Metal Nanoparticles , Nanotubes , Dogs , Rats , Animals , Osteogenesis , Metal Nanoparticles/chemistry , Silver/pharmacology , Silver/chemistry , Osseointegration , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Titanium/pharmacology , Titanium/chemistry , Nanotubes/chemistry , Surface Properties
5.
Langmuir ; 38(35): 10760-10767, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-35998607

ABSTRACT

Interfacial free energy is a quantitative basis for explaining and predicting interfacial behavior that is ubiquitous in nature. The contact angle (CA) method can determine the surface free energy (γ) as well as Lifshitz-van der Waals (γLW) and Lewis acid/base (γ+/γ-) components of a solid material from its CAs with a set of known test liquids according to the extended Young-Dupré equation. However, the reliability of the "known" parameters of the test liquids is questioned due to the long-neglected surface roughness effect during calibration of the liquids. This study proposed a simple and practicable two-step approach to correct the energy parameters of several test liquids by incorporating Wenzel's surface roughness relationship into CA measurement. Step 1: water and two apolar liquids (diiodomethane and α-bromonaphthalene) were used as benchmarks to calibrate the surface roughness and energy parameters of two reference solids [apolar poly(tetrafluoroethylene) and monopolar poly(methyl methacrylate)], and step 2: the reference solids were used to calibrate any other test liquids by solving the energy parameters from their CAs in the extended Young-Dupré-Wenzel model. Monte Carlo simulation was used to evaluate error transmission and robustness of the model solutions. The obtained energy parameters (γLW/γ+/γ-) of four test liquids (dimethyl sulfoxide, formamide, ethylene glycol, and glycerol) are 28.01/13.68/4.67, 34.95/3.53/37.62, 26.26/7.51/15.74, and 32.99/9.24/26.02 mJ/m2, respectively, and different from the literature values. The liquids were applied to characterize an example solid surface with true γLW/γ+/γ- values of 28.00/1.00/8.00 mJ/m2 and a roughness index (r) of 1.60. Without correction of the liquid parameters, the calculated surface energy, hydration energy, and hydrophobic attraction energy of the solid sample can deviate by 50, 13, and 27%, respectively. This proves the necessity of correcting parameters of the test liquids before they can be used in CA and interfacial energy studies in the presence of surface roughness.

6.
Article in English | MEDLINE | ID: mdl-35096102

ABSTRACT

Pelvic inflammatory disease (PID), a common infectious disease of the female reproductive tract, is mainly characterized by abdominal/pelvic pain and tenderness of the uterus, cervix, or adnexa on physical exam. In recent years, its incidence has gradually increased yearly due to numerous factors, including sexually transmitted diseases and intrauterine operations. Based on self-report of PID in the National Health and Nutrition Examination Survey (NHANES) 2013-2014 survey, PID impacts approximately 2.5 million women in the US during their reproductive age. Although empiric treatments such as antibiotics or surgery could alleviate the related symptoms of PID, its unsatisfactory obstetric outcome and high relapse bring heavy physical and psychological burden to women. Complementary and alternative medicine (CAM), a complementary therapy other than Western medicine with a complete theoretical and practical system, has been attached to importance in the world due to its remarkable efficacy. More people are accepting and trying to use CAM to treat gynecological diseases, including infertility, polycystic ovary syndrome, and PID, but its efficacy and mechanism are still controversial. This article reviews the previous literature systematically focusing on the effectiveness, safety, and mechanism of CAM in the treatment of PID to provide an evidence-based basis for the clinical application of CAM in patients with PID.

7.
mBio ; 12(4): e0156621, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34372692

ABSTRACT

Plants fine-tune the growth-defense trade-off to survive when facing pathogens. Meanwhile, plant-associated microbes, such as the endophytes inside plant tissues, can benefit plant growth and stress resilience. However, the mechanisms for the beneficial microbes to increase stress resistance with little yield penalty in host plants remain poorly understood. In the present study, we report that endophytic Streptomyces hygroscopicus OsiSh-2 can form a sophisticated interaction with host rice, maintaining cellular homeostasis under pathogen-infection stress, and optimize plant growth and disease resistance in rice. Four-year field trials consistently showed that OsiSh-2 could boost host resistance to rice blast pathogen Magnaporthe oryzae while still maintaining a high yield. The integration of the proteomic, physiological, and transcriptional profiling analysis revealed that OsiSh-2 induced rice defense priming and controlled the expression of energy-consuming defense-related proteins, thus increasing the defense capability with the minimized costs of plant immunity. Meanwhile, OsiSh-2 improved the chloroplast development and optimally maintained the expression of proteins related to plant growth under pathogen stress, thus promoting the crop yield. Our results provided a representative example of an endophyte-mediated modulation of disease resistance and fitness in the host plant. The multilayer effects of OsiSh-2 implicate a promising future of using endophytic actinobacteria for disease control and crop yield promotion. IMPORTANCE Under disease stress, activation of defense response in plants often comes with the cost of a reduction in growth and yield, which is referred as the growth-defense trade-off. The microorganisms which can be recruited by plants to mitigate the growth-defense trade-off are of great value in crop breeding. Here, we reported a rice endophytic actinomycetes Streptomyces hygroscopicus OsiSh-2, which can improve host performances on resistance to rice blast while still sustaining high yield in the 4-year field trials. The proteomic, physiological, and transcriptional profiling data offer insights into the molecular basis underlying the balancing between defense and growth in OsiSh-2-rice symbiont. The findings provide an example for the endophyte-mediated modulation of growth-defense trade-offs in plants and indicated the promising application of endophytic actinobacterial strains in agriculture to breed "microbe-optimized crops."


Subject(s)
Disease Resistance/genetics , Endophytes/metabolism , Host Microbial Interactions/genetics , Oryza/growth & development , Oryza/microbiology , Streptomyces/metabolism , Agriculture/methods , Endophytes/genetics , Host Microbial Interactions/physiology , Plant Development/genetics , Plant Diseases/microbiology , Streptomyces/genetics
8.
Sci Total Environ ; 787: 147660, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34004543

ABSTRACT

Robinia pseudoacacia L., a pioneer woody legume grown in mining areas, has been recognized as a remarkable accumulator of various heavy metals. Compared with other hazardous heavy metals (HMs), it is of low capacity in accumulating Cd, which, as a result, may hinder the phytoremediation efficiency. To enhance R. pseudoacacia's uptake efficiency of Cd, the individual effects of various rhizobia and arbuscular mycorrhizal fungi have been reported, however, the combined influence of endophytes and biochar receives little attention. In the current study, a Cd-adsorbing endophyte Enterobacter sp. YG-14 was inoculated to R. pseudoacacia, and its extraordinary effect on increasing R. pseudoacacia's Cd uptake was found, which was ascribed to the reinforced root Cd chelation by the strain through secreting siderophores/LMWOAs. Further, P-enriched sludge biochar was applied along with YG-14 to form a combined biochar-endophyte-accumulator system, in which biomineralization were reinforced (i.e. CdCO3 and Cd2P2O7 were generated), as the total and acid-soluble Cd in rhizosphere were reduced by 61.75% and 69.01% respectively, and soil's bacterial diversity was further improved with diversified N2-fixing microbial biomarkers. Multiple synergistic effects (E > 0) were also found, with the optimum performance on plant growth parameters (increased by 39.61%-561.91%) in comparison to the control group. Moreover, the system exhibited a preferable Cd phytostabilization capacity with the highest increase (81.42%) in Cd accumulation and a significant reduction (72.73%) in Cd root-to-shoot translocation.


Subject(s)
Robinia , Soil Pollutants , Biodegradation, Environmental , Cadmium/analysis , Charcoal , Endophytes , Enterobacter , Rhizosphere , Sewage , Soil , Soil Pollutants/analysis
9.
Plant Physiol Biochem ; 158: 275-283, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33243710

ABSTRACT

The limited availability of nutrient Fe severely impairs the health of almost all organisms. Endophytic actinobacteria can benefit the host plant in different ways. We previously inferred that the rice (Oryza) endophytic Streptomyces hygroscopicus OsiSh-2 possesses a highly efficient Fe-acquisition system. In this work, we first evaluated the effects of OsiSh-2 on the Fe-deficiency resilience of the host rice. The results demonstrated that the inoculation of OsiSh-2 considerably increased the plant biomass, Fe concentration and translocation factor, and chlorophyll content, and net leaf photosynthetic rate under Fe limiting condition. The expression of genes involved with Fe3+-reduction-related strategy in rice was up-regulated, while that involved with Fe3+-chelation-related strategy was down-regulated by OsiSh-2 treatment. Meanwhile, the OsiSh-2-rice symbiont showed enhancement of Fe3+-chelate reductase activity, total siderophore production, and acidification trend in the rhizosphere under Fe deficiency compared to plants without this endophyte. In conclusion, endophytic OsiSh-2 could protect plants against Fe-deficient stress by a sophisticated interaction with the host, including modulating Fe chelation, solubilization, reduction and translocation, ultimately leading to enhanced fitness of plant.


Subject(s)
Iron Deficiencies , Oryza/microbiology , Streptomyces/physiology , Endophytes/physiology , Oryza/physiology , Siderophores
10.
Membranes (Basel) ; 10(8)2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32751292

ABSTRACT

Membrane fouling is a complicated issue in microfiltration and ultrafiltration. Clearly identifying the dominant fouling mechanisms during the filtration process is of great significance for the phased and targeted control of fouling. To this end, we propose a semi-empirical multiple linear regression model to describe flux decline, incorporating the five fouling mechanisms (the first and second kinds of standard blocking, complete blocking, intermediate blocking, and cake filtration) based on the additivity of the permeate volume contributed by different coexisting mechanisms. A piecewise fitting protocol was established to distinguish the fouling stages and find the significant mechanisms in each stage. This approach was applied to a case study of a microfiltration membrane filtering a model foulant solution composed of polysaccharide, protein, and humic substances, and the model fitting unequivocally revealed that the dominant fouling mechanism evolved in the sequence of initial adaptation, fast adsorption followed by slow adsorption inside the membrane pores, and the gradual growth of a cake/gel layer on the membrane surface. The results were in good agreement with the permeate properties (total organic carbon, ultraviolet absorbance, and fluorescence) during the filtration process. This modeling approach proves to be simple and reliable for identifying the main fouling mechanisms during membrane filtration with statistical confidence.

11.
Chemosphere ; 254: 126830, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32330758

ABSTRACT

Excitation-emission matrix (EEM) fluorescence spectroscopy is a powerful tool for the characterization of dissolved organic matter (DOM) in wastewater systems. It is of particular value if its utility could be extended by connecting the spectral features to hydrophobicity, one of the fundamental physicochemical properties of DOM. In this study, we employed a DAX-8 resin column to fractionate the hydrophobic/philic components of DOM and determine the relative degree of hydrophobicity by adjusting the critical retention factor (k'cr, the ratio of treated water sample volume to column volume). A higher k'cr would result in a higher hydrophobicity of the column effluent. At different k'cr values (5, 10, 25, 50, 100, and 200), the EEM characteristics of the obtained DOM components were inspected, including overall properties (average fluorescence per total organic carbon and UV absorbance), regional properties (fluorescence regional integration (FRI) and its secondary parameters), and energy-related properties (energy level of the excited states, Stokes shift for relaxation of the excited states, and fluorescence lifetime). In case studies of a wastewater membrane bioreactor and an oxidation ditch, plenty of the EEM properties varied significantly with logk'cr (r > 0.9, p < 0.05). The average fluorescence per UV absorbance (reflecting quantum yield), fluorescence proportion at Stokes shift ≥ 1.1 µm-1, and some secondary FRI parameters presented the best linear fitting with logk'cr, suggesting a smooth variation of the π-conjugated structures with the relative degree of DOM hydrophobicity. This may help to further understand the relationship between EEM fingerprints and DOM hydrophobicity.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical/analysis , Bioreactors , Chemical Fractionation , Fluorescence , Humic Substances/analysis , Hydrophobic and Hydrophilic Interactions , Spectrometry, Fluorescence/methods , Wastewater/analysis , Wastewater/chemistry
12.
Langmuir ; 35(47): 15009-15016, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31671941

ABSTRACT

While the contact angle is a well-applied indicator of membrane hydrophobicity and surface energy, the interference of surface roughness and porosity in contact angle measurement and surface energy calculation has been long neglected in the field of porous membrane study. We propose an improved method to straightforwardly derive the surface energy of the porous membrane from contact angles with the interference effect corrected. A linearized model was established combining the Young-Dupré and Cassie-Baxter equations, from which the surface energy (Lifshitz-van der Waals and Lewis acid/base components) and roughness index (surface area difference) can be solved simultaneously at a given porosity using contact angles measured with a set of standard polar/nonpolar test liquids. The model solution was examined using hydrophilic microfiltration membranes with different pore morphologies (including perforated plate-like PCTE, irregular particulate bed-like PVDF, and fibrous mesh-like PTFE membranes), with the robustness of the results evaluated via Monte Carlo simulation. In comparison with the verified results of the model solution, it was found that the Lifshitz-van der Waals Lewis acid/base energy values for the tested membranes would deviate by 50-87, 30-160, and 52-97%, respectively, if surface roughness and porosity were neglected in the calculation. The profound effect of roughness and porosity on surface energy determination was further confirmed via theoretical analysis of the Young-Dupré and Cassie-Baxter relationships. This improved approach may apply to the surface energy characterization of hydrophilic rough porous membranes (e.g., hydrophilic microfiltration membranes).

13.
Environ Sci Technol ; 53(15): 8985-8993, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31189066

ABSTRACT

Hydrophobicity and molecular weight (MW) are two fundamental properties of dissolved organic matter (DOM) in wastewater treatment systems. This study proposes fluorescence Stokes shift and specific fluorescence intensity (SFI) as novel indicators of hydrophobicity and MW. These indicators originate from the energy gap and photon efficiency of the fluorescence process and can be readily extracted from a fluorescence excitation-emission matrix (EEM). The statistical linkages between these indicators and hydrophobicity/MW were explored through investigation of DOM across 10 full-scale membrane bioreactors treating municipal wastewater. Stokes shift was found to exhibit a general rule among the hydrophobicity components in the order of hydrophilic substances (HIS) < hydrophobic acids (HOA) < hydrophobic bases (HOB). The Stokes shift of 1.2 µm-1 is a critical border, above which the relative fluorescence correlated significantly with the HOA-related content (Pearson's r = 0.8). With regard to MW distribution (<1, 1-10, 10-100, and >100 kDa), SFI was found to be the most sensitive to the change of MW of <1 kDa proportion, especially at the excitation/emission wavelengths of 200-320/310-550 nm (r > 0.9). Hydrophobicity-related π conjugation and MW-dependent light exposure might be responsible for the correlations. These fluorescence indicators may be useful for convenient monitoring of DOM in wastewater treatment systems.


Subject(s)
Water Pollutants, Chemical , Bioreactors , Humic Substances , Hydrophobic and Hydrophilic Interactions , Molecular Weight , Spectrometry, Fluorescence , Wastewater
14.
Mar Environ Res ; 133: 15-23, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29174425

ABSTRACT

A classical red tide alga Skeletonema costatum was cultured under various nitrate levels to investigate its physiological response to nitrate enrichment combined with CO2 limitation. The higher nitrate levels increased content of photosynthetic pigments (Chl a and Chl c), electron transport rate in photosystem II, photosynthetic O2 evolution, and thus growth rate in S. costatum. On the other hand, the lower CO2 levels (3.5-4.4 µmol kg-1 seawater) and higher pH (8.56-8.63) values in seawater were observed under higher nitrate conditions. Redox activity of plasma membrane and carbonic anhydrase in S. costatum was enhanced to address the reduced CO2 level at higher nitrate levels. In addition, the pH compensation point was enhanced and direct HCO3- use was induced at higher nitrate levels. These findings indicate that nitrate enrichment would stimulate the breakout of S. costatum dominated red tides via enhancing its photosynthetic performances, and maintain a quick growth rate under CO2 limitation conditions through improving its inorganic carbon acquisition capability. Our study sheds light on the mechanisms of S. costatum defeating CO2 limitation during algal bloom.


Subject(s)
Diatoms/physiology , Harmful Algal Bloom , Nitrates/metabolism , Water Pollutants, Chemical/metabolism , Carbon , Photosynthesis
15.
Eur J Med Chem ; 45(7): 3219-22, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20409617

ABSTRACT

A series of novel 2',3'-diethanethio-2',3',5'-trideoxy-5'-triazoloribonucleosides was synthesized in excellent yields and their antitumor activity was evaluated. These nucleoside analogues with aromatic substituted triazole rings showed significantly improved activity towards a broad range of tumor cell lines and those without arene substitutes were inactive.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Nucleosides/chemical synthesis , Nucleosides/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Humans , Inhibitory Concentration 50 , Nucleosides/chemistry
16.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 7): o1572, 2010 Jun 05.
Article in English | MEDLINE | ID: mdl-21587813

ABSTRACT

The title compound, C(16)H(20)N(2)O(2), was obtained by catalytic asymmetric cyclo-addition of trans-3-propyl-acrolein with 1-benzyl-idenepyrazolid-3-one betaine. There are two symmetry-independent mol-ecules in the asymmetric unit. In both mol-ecules, the two five-membered heterocyclic rings adopt envelope conformations.

17.
Bioorg Med Chem Lett ; 20(1): 240-3, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19917528

ABSTRACT

A series of novel 2',3'-dideoxy-2',3'-diethanethioribonucleosides and those modified with a triazole ring were prepared in excellent yields and their antitumor activity was evaluated. Nucleosides with a triazole ring, 16a-16c, showed significantly improved activity towards a broad range of tumor cell lines.


Subject(s)
Antineoplastic Agents/chemical synthesis , Thionucleosides/chemical synthesis , Triazoles/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , HeLa Cells , Hep G2 Cells , Humans , Magnetic Resonance Spectroscopy , Thionucleosides/chemistry , Thionucleosides/pharmacology
18.
Molecules ; 12(5): 979-87, 2007 May 11.
Article in English | MEDLINE | ID: mdl-17873833

ABSTRACT

A new type of NADH model compound with good reactivity and enantioselectivity has been synthesized in good yields by an efficient and convenient synthetic method. The structures of these model compounds were confirmed by 1H and 13C-NMR and MS.


Subject(s)
Formates/chemical synthesis , Mandelic Acids/chemistry , NAD/chemistry , Formates/chemistry , Magnetic Resonance Spectroscopy , Mass Spectrometry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...