Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 671: 469-476, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38815382

ABSTRACT

Promoting water dissociation and H intermediate desorption play a pivotal role in achieving highly efficient hydrogen evolution reaction (HER) in alkaline media but remain a great challenge. Herein, we rationally develop a unique W-doped NiSx/Ni heterointerface as a favorable HER electrocatalyst which was directly grown on the Cu nanowire foam substrate (W-NiSx/Ni@Cu) by the electrodeposition strategy. Benefiting from the rational design of the interfaces, the electronic coupling of the W-NiSx/Ni@Cu can be efficiently modulated to lower the HER kinetic barrier. The obtained W-NiSx/Ni@Cu exhibits an enhanced HER activity with a low overpotential of 38 mV at 10 mA cm-2 and a small Tafel value of 27.5 mV dec-1, and high stability during HER catalysis. In addition, in-situ Raman spectra reveal that the Ni2+ active sites preferentially adsorb OH intermediate. The theoretical calculation confirms that the water dissociation is accelerated by the construction of W-NiSx/Ni heterointerface and H intermediate desorption can be also promoted by H spillover from S active sites in W-NiSx to Ni active sites in metal Ni. This work offers a valuable reference for rational designing heterointerface of electrocatalysts and provides an available method to accelerate the HER kinetics for the ampere-level current density under low overpotential.

2.
Adv Mater ; : e2402979, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811011

ABSTRACT

Copper (Cu) nanomaterials are a unique kind of electrocatalysts for high-value multi-carbon production in carbon dioxide reduction reaction (CO2RR), which holds enormous potential in attaining carbon neutrality. However, phase engineering of Cu nanomaterials remains challenging, especially for the construction of unconventional phase Cu-based asymmetric heteronanostructures. Here the site-selective growth of Cu on unusual phase gold (Au) nanorods, obtaining three kinds of heterophase fcc-2H-fcc Au-Cu heteronanostructures is reported. Significantly, the resultant fcc-2H-fcc Au-Cu Janus nanostructures (JNSs) break the symmetric growth mode of Cu on Au. In electrocatalytic CO2RR, the fcc-2H-fcc Au-Cu JNSs exhibit excellent performance in both H-type and flow cells, with Faradaic efficiencies of 55.5% and 84.3% for ethylene and multi-carbon products, respectively. In situ characterizations and theoretical calculations reveal the co-exposure of 2H-Au and 2H-Cu domains in Au-Cu JNSs diversifies the CO* adsorption configurations and promotes the CO* spillover and subsequent C-C coupling toward ethylene generation with reduced energy barriers.

3.
Huan Jing Ke Xue ; 45(5): 3098-3106, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38629570

ABSTRACT

In recent years, the environmental pollution of microplastics in Poyang Lake has received increasing attention. Baisha Lake of Poyang Lake was selected as the study area, and samples of water and sediments of Baisha Lake and the microplastics therein were collected, and the polymer types of microplastics were identified as polyethylene (PE), polyester (PET), polypropylene (PP), and polystyrene (PS) using Fourier infrared spectroscopy. We also analyzed the structural composition of bacterial communities in water, in sediments, and on microplastic surfaces using 16S high-throughput sequencing. The species richness and diversity of bacteria on the microplastic surfaces were lower than those in the surrounding water and sediments. The results of NMDS analysis showed that the bacterial community structures on the microplastic surfaces differed greatly from those in the surrounding sediments and water. The bacterial community composition in water and sediment differed from that on the microplastic surfaces, and the dominant bacterial phyla on the microplastic surfaces were Proteobacteria and Bacteroidota, and their relative abundance on the microplastic surfaces was higher than that in sediment. The relative abundance of Proteobacteria was higher than that in water. The relative abundances of Bacteroidota and Actinobacteriota were significantly lower than that of water. Massilia and Pseudomonas were the dominant genera on the microplastic surfaces, and their relative abundances were significantly higher than those in the surrounding water and sediments. BugBase phenotype prediction revealed that the relative abundance of contains mobile elements, biofilm formation, potential pathogenicity, and stress tolerance phenotypes of microplastic bacterial communities were significantly higher than those of the surrounding water and sediments. The results revealed that microplastics may have contributed to the spread of harmful bacteria, including pathogenic bacteria, and increased the potential pathogenicity of bacterial communities. Additionally, microplastic surface bacterial communities had higher phenotypes of mobile gene element content. Revealing the potential harm of microplastic pollution to wetland ecology at the micro level may provide a scientific reference for maintaining the ecological stability of wetlands.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics/analysis , Lakes/chemistry , Environmental Monitoring , Water/analysis , Bacteria/genetics , Proteobacteria , China , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry
4.
J Am Chem Soc ; 146(8): 5355-5365, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38358943

ABSTRACT

The twin boundary, a common lattice plane of mirror-symmetric crystals, may have high reactivity due to special atomic coordination. However, twinning platinum and iridium nanocatalysts are grand challenges due to the high stacking fault energies that are nearly 1 order of magnitude larger than those of easy-twinning gold and silver. Here, we demonstrate that Turing structuring, realized by selective etching of superthin metal film, provides 14.3 and 18.9 times increases in twin-boundary densities for platinum and iridium nanonets, comparable to the highly twinned silver nanocatalysts. The Turing configurations with abundant low-coordination atoms contribute to the formation of nanotwins and create a large active surface area. Theoretical calculations reveal that the specific atom arrangement on the twin boundary changes the electronic structure and reduces the energy barrier of water dissociation. The optimal Turing-type platinum nanonets demonstrated excellent hydrogen-evolution-reaction performance with a 25.6 mV overpotential at 10.0 mA·cm-2 and a 14.8-fold increase in mass activity. And the bifunctional Turing iridium catalysts integrated in the water electrolyzer had a mass activity 23.0 times that of commercial iridium catalysts. This work opens a new avenue for nanocrystal twinning as a facile paradigm for designing high-performance nanocatalysts.

5.
ACS Nano ; 18(9): 7192-7203, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38385434

ABSTRACT

Electrocatalytic carbon dioxide reduction reaction (CO2RR) toward value-added chemicals/fuels has offered a sustainable strategy to achieve a carbon-neutral energy cycle. However, it remains a great challenge to controllably and precisely regulate the coordination environment of active sites in catalysts for efficient generation of targeted products, especially the multicarbon (C2+) products. Herein we report the coordination environment engineering of metal centers in coordination polymers for efficient electroreduction of CO2 to C2+ products under neutral conditions. Significantly, the Cu coordination polymer with Cu-N2S2 coordination configuration (Cu-N-S) demonstrates superior Faradaic efficiencies of 61.2% and 82.2% for ethylene and C2+ products, respectively, compared to the selective formic acid generation on an analogous polymer with the Cu-I2S2 coordination mode (Cu-I-S). In situ studies reveal the balanced formation of atop and bridge *CO intermediates on Cu-N-S, promoting C-C coupling for C2+ production. Theoretical calculations suggest that coordination environment engineering can induce electronic modulations in Cu active sites, where the d-band center of Cu is upshifted in Cu-N-S with stronger selectivity to the C2+ products. Consequently, Cu-N-S displays a stronger reaction trend toward the generation of C2+ products, while Cu-I-S favors the formation of formic acid due to the suppression of C-C couplings for C2+ pathways with large energy barriers.

6.
Nano Lett ; 24(5): 1553-1562, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38266492

ABSTRACT

Although metal-organic frameworks (MOFs) have attracted more attention for the electrocatalytic CO2 reduction reaction (CO2RR), obtaining multicarbon products with a high Faradaic efficiency (FE) remains challenging, especially under neutral conditions. Here, we report the controlled synthesis of stable Cu(I) 5-mercapto-1-methyltetrazole framework (Cu-MMT) nanostructures with different facets by rationally modulating the reaction solvents. Significantly, Cu-MMT nanostructures with (001) facets are acquired using isopropanol as a solvent, which favor multicarbon production with an FE of 73.75% and a multicarbon:single-carbon ratio of 3.93 for CO2RR in a neutral electrolyte. In sharp contrast, Cu-MMT nanostructures with (100) facets are obtained utilizing water, promoting single-carbon generation with an FE of 63.98% and a multicarbon: single-carbon ratio of only 0.18. Furthermore, this method can be extended to other Cu-MMT nanostructures with different facets in tuning the CO2 reduction selectivity. This work opens up new opportunities for the highly selective and efficient CO2 electroreduction to multicarbon products on MOFs via facet engineering.

7.
Ying Yong Sheng Tai Xue Bao ; 34(7): 1968-1974, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37694481

ABSTRACT

As a new type of pollutant, microplastics accumulate continuously in the environment. The environmental problems caused by microplastics have attracted wide attention. In this study, we collected water, sediment and four types of microplastics (film, foam, fiber and fragment) from wetland in East Lake area of Poyang Lake. We used high-throughput sequencing technology to analyze the bacterial diversity and community structure of water, sediment, and microplastics surface. The results showed that the bacterial richness and diversity of water and sediment were significantly higher than that on microplastics, and the bacterial richness of foaming microplastics was significantly lower than that of the other three types of microplastics. There were significant differences of bacterial communities between water, sediment, and microplastics. There were significant differences cross different types of microplastics. Proteobacteria, Bacteroidetes, and Actinobacteria were the main bacterial communities of water, sediment, and microplastics. The relative abundance of Bacteroidetes and Actinobacteria in water was higher than that in sediments and microplastics, while the relative abundance of Bacteroidetes and Actinobacteria in foaming microplastics was higher than that in other three types. At the genus level, the dominant ones included Massilia, Flavobacteria, and Pseudomonas. The relative abundance of Massilia and Pseudomonas in water and sediments was lower than that on microplastics, and the relative abundance of Flavobacteria was not different among water, sediment and microplastics. The relative abundance of Massilia in microplastics followed an order of fragment>fiber>film>foam, and that of Pseudomonas was film>fiber>foam>fragment. The results of metabolic pathway prediction analysis showed that except for foaming microplastics, the bacterial metabolic pathways on the surface of the other three types of microplastics were significantly different from those in water and sediment. The cellular processes, organismal systems, environmental information processing, and human diseases in bacterial metabolic pathways on microplastics surface were significantly higher than those in water and sediment. Our results suggested that microbial community structure on the surface of microplastics was significantly different from that in water and sediment, and that the morphology type of microplastics affected microbial community structure on the surface.


Subject(s)
Actinobacteria , Environmental Pollutants , Humans , Microplastics , Plastics , Wetlands
8.
Adv Mater ; 35(51): e2304414, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37515580

ABSTRACT

Structural engineering of nanomaterials offers a promising way for developing high-performance catalysts toward catalysis. However, the delicate modulation of thermodynamically unfavorable nanostructures with unconventional phases still remains a challenge. Here, the synthesis of hierarchical AuCu nanostructures is reported with hexagonal close-packed (2H-type)/face-centered cubic (fcc) heterophase, high-index facets, planar defects (e.g., stacking faults, twin boundaries, and grain boundaries), and tunable Cu content. The obtained 2H/fcc Au99 Cu1 hierarchical nanosheets exhibit excellent performance for the electrocatalytic CO2 reduction to produce CO, outperforming the 2H/fcc Au91 Cu9 and fcc Au99 Cu1 . The experimental results, especially those obtained by in-situ differential electrochemical mass spectroscopy and attenuated total reflection Fourier-transform infrared spectroscopy, suggest that the enhanced catalytic performance of 2H/fcc Au99 Cu1 arises from the unconventional 2H/fcc heterophase, high-index facets, planar defects, and appropriate alloying of Cu. Impressively, the 2H/fcc Au99 Cu1 shows CO Faradaic efficiencies of 96.6% and 92.6% at industrial current densities of 300 and 500 mA cm-2 , respectively, as well as good durability, placing it among the best CO2 reduction electrocatalysts for CO production. The atomically structural regulation based on phase engineering of nanomaterials (PEN) provides an avenue for the rational design and preparation of high-performance electrocatalysts for various catalytic applications.

9.
Small Methods ; 6(12): e2201107, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36287094

ABSTRACT

Prussian blue analogs (PBAs) with open and porous frameworks have attracted wide attention in alkali metal ion batteries due to their high theoretical specific capacities and fast ion insertion/extraction kinetics. However, abundant coordinated water usually exists in traditional PBAs synthesized in aqueous systems. Consequently, the competition between coordinated water and alkali ions easily causes the rapid structural collapse of PBAs during the repeated discharge/charge cycles, lowering the cycling stability, and rate performance of batteries. Besides, most reported PBAs adopt the cubic/particle-like morphologies with large sizes, which usually suffer from insufficient ion diffusion especially at high rates. Herein, a facile and general strategy for the synthesis of 2D CoCo, CuFe, CuCeFe, and CuCeCo-based PBA nanosheets is reported. As a proof-of-concept application, Co3 [Co(CN)6 ]2 nanosheets are evaluated as anode materials for lithium-ion batteries. Thanks to the lower coordinated water content, smaller impedance and higher lithium-ion diffusion coefficient, Co3 [Co(CN)6 ]2 nanosheets deliver a superior reversible capacity of 810.4 mAh g-1 at 100 mA g-1 , better rate performance, and higher cycling stability compared to common Co3 [Co(CN)6 ]2 cubes. Further studies indicate that the capacitance-controlled electrochemical behaviors dominate in the Co3 [Co(CN)6 ]2 nanosheets, giving rise to their excellent structural stability and superior lithium storage performance even at high rates.

10.
Proc Natl Acad Sci U S A ; 119(40): e2204666119, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36161954

ABSTRACT

Given the high energy density and eco-friendly characteristics, lithium-carbon dioxide (Li-CO2) batteries have been considered to be a next-generation energy technology to promote carbon neutral and space exploration. However, Li-CO2 batteries suffer from sluggish reaction kinetics, causing large overpotential and poor energy efficiency. Here, we observe enhanced reaction kinetics in aprotic Li-CO2 batteries with unconventional phase 4H/face-centered cubic (fcc) iridium (Ir) nanostructures grown on gold template. Significantly, 4H/fcc Ir exhibits superior electrochemical performance over fcc Ir in facilitating the round-trip reaction kinetics of Li+-mediated CO2 reduction and evolution, achieving a low charge plateau below 3.61 V and high energy efficiency of 83.8%. Ex situ/in situ studies and theoretical calculations reveal that the boosted reaction kinetics arises from the highly reversible generation of amorphous/low-crystalline discharge products on 4H/fcc Ir via the Ir-O coupling. The demonstration of flexible Li-CO2 pouch cells with 4H/fcc Ir suggests the feasibility of using unconventional phase nanomaterials in practical scenarios.

11.
Adv Mater ; 34(19): e2110607, 2022 May.
Article in English | MEDLINE | ID: mdl-35275439

ABSTRACT

Electrocatalytic carbon dioxide reduction reaction (CO2 RR) holds significant potential to promote carbon neutrality. However, the selectivity toward multicarbon products in CO2 RR is still too low to meet practical applications. Here the authors report the delicate synthesis of three kinds of Ag-Cu Janus nanostructures with {100} facets (JNS-100) for highly selective tandem electrocatalytic reduction of CO2 to multicarbon products. By controlling the surfactant and reduction kinetics of Cu precursor, the confined growth of Cu with {100} facets on one of the six equal faces of Ag nanocubes is realized. Compared with Cu nanocubes, Ag65 -Cu35 JNS-100 demonstrates much superior selectivity for both ethylene and multicarbon products in CO2 RR at less negative potentials. Density functional theory calculations reveal that the compensating electronic structure and carbon monoxide spillover in Ag65 -Cu35 JNS-100 contribute to the enhanced CO2 RR performance. This study provides an effective strategy to design advanced tandem catalysts toward the extensive application of CO2 RR.

12.
Small ; 18(11): e2106766, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35048509

ABSTRACT

The electrochemical carbon dioxide reduction reaction (CO2 RR) provides a sustainable strategy to relieve global warming and achieve carbon neutrality. However, the practical application of CO2 RR is still limited by the poor selectivity and low current density. Here, the surface molecular functionalization of unusual phase metal nanomaterials for high-performance CO2 RR under industry-relevant current density is reported. It is observed that 5-mercapto-1-methyltetrazole (MMT)-modified 4H/face-centered cubic (fcc) gold (Au) nanorods demonstrate greatly enhanced CO2 RR performance than original oleylamine (OAm)-capped 4H/fcc Au nanorods in both an H-type cell and flow cell. Significantly, MMT-modified 4H/fcc Au nanorods deliver an excellent carbon monoxide selectivity of 95.6% under the industry-relevant current density of 200 mA cm-2 . Density functional theory calculations reveal distinct electronic modulations by surface ligands, in which MMT improves while OAm suppresses the surface electroactivity of 4H/fcc Au nanorods. Furthermore, this method can be extended to various MMT derivatives and conventional fcc Au nanostructures in boosting CO2 RR performance.

13.
Neurosurg Focus ; 48(3): E3, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32114559

ABSTRACT

OBJECTIVE: In China, orthopedics and neurosurgery are among the most desired majors for medical students. However, little is known about the working and living status of specialists in these two fields. This study was aimed at evaluating job satisfaction, engagement, and burnout in the population of Chinese orthopedist and neurosurgeon trainees. METHODS: A nationwide online survey was administered in mainland China. Questionnaires were answered anonymously. Job satisfaction, engagement, and burnout were assessed using the Job Descriptive Index, the Utrecht Work Engagement Scale, and the Maslach Burnout Inventory, respectively. RESULTS: Data were collected from 643 orthopedist trainees and 690 neurosurgeon trainees. Orthopedists and neurosurgeons showed no statistical difference in terms of age, sex, job titles, and preference for working in tertiary hospitals. Orthopedists had a higher marriage rate (p < 0.01), a lower divorce rate (p = 0.017), relatively shorter working hours (p < 0.01), and a higher annual income (p = 0.023) than neurosurgeons. Approximately 40% of respondents experienced workplace violence in the last 5 years. Less than 10% of respondents were satisfied with their pay, and over 70% would not encourage their offspring to become a doctor. Orthopedists were more satisfied with their careers than neurosurgeons (p < 0.01) and had a higher level of work engagement (p < 0.01). In addition, a higher proportion of orthopedists were burnt out (p < 0.01) than neurosurgeons, though the difference between the two groups was not significant (p = 0.088). Multivariate regressions suggested that younger age (≤ 25 years old), being a senior trainee, getting divorced, working in a regional hospital, long working hours (≥ 71 hrs/wk), a low annual income (<¥100,000), sleeping < 6 hrs/day, and experience with workplace violence were significantly related to burnout for both groups. CONCLUSIONS: Chinese orthopedic surgical and neurosurgical trainees are under significant stress. Orthopedic surgeons showed relatively optimistic data in their assessments of job satisfaction, engagement, and burnout. This study may provide valuable information for orthopedic and neurosurgical candidates considering either specialty as a career.


Subject(s)
Job Satisfaction , Neurosurgeons/education , Neurosurgery/education , Orthopedic Surgeons/education , Physicians/statistics & numerical data , Burnout, Professional/epidemiology , China , Cross-Sectional Studies , Humans
14.
BMJ Open ; 9(10): e028309, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31619419

ABSTRACT

OBJECTIVES: Chinese neurosurgery has made great progress during the past decades; yet, little is known about the working status of neurosurgeons. This study aimed to evaluate the difference between academic and non-academic neurosurgeons, focusing on their professional burnout, job satisfaction and work engagement. DESIGN: Cross-sectional nationwide survey. STUDY SETTING: The survey was conducted in China between 2017 and 2018. PARTICIPANTS: A total number of 823 academic neurosurgeons and 379 non-academic neurosurgeons participated in this study. OUTCOME MEASURES: Professional burnout, job satisfaction and work engagement were assessed using the Maslach Burnout Inventory, the Job Descriptive Index and the Utrecht Work Engagement Scale, respectively. RESULTS: The majority of respondents were male (92.93%), less than 45 years old (85.27%) and married (79.53%). Chinese neurosurgeons worked 63.91±11.04 hours per week, and approximately 45% experienced burnout. Compared with non-academic respondents, academic neurosurgeons had longer working hours (p<0.01), higher income (p<0.01) and were less willing to get married (p<0.01). In addition, they showed a lower degree of burnout (p<0.01), a higher level of job satisfaction (p<0.01) and were more enthusiastic at work (p=0.015). Multivariate regression analyses indicated that divorced (OR 7.02, 95% CI 2.37 to 15.08) and workplace violence (OR 1.52, 95% CI 1.18 to 2.24) were associated with burnout for both academic and non-academic respondents. Long working hours (≥71 hours per week) and low annual income (<1 00 000 RMB) were risk factors for burnout among academic neurosurgeons. For non-academic neurosurgical surgeons (age 36-45 years), working as attending doctors, serving in public hospitals and having the first house-living child were all closely related to the incidence of burnout. CONCLUSION: Chinese neurosurgeons are under significant stress particularly for the non-academic neurosurgeons. Offering better opportunities for training, promotion, higher income and safer working environments could be solutions to relieve burnout and improve career satisfaction and engagement. TRIAL REGISTRATION NUMBER: ChiCTR1800014762. This article is not linked to a clinical trial.


Subject(s)
Burnout, Professional/epidemiology , Job Satisfaction , Neurosurgeons/psychology , Neurosurgery/organization & administration , Work Engagement , Workload , Adult , Attitude of Health Personnel , China , Female , Humans , Male , Middle Aged , Socioeconomic Factors , Surveys and Questionnaires
15.
Environ Monit Assess ; 184(8): 4725-35, 2012 Aug.
Article in English | MEDLINE | ID: mdl-21887478

ABSTRACT

A semi-continuous water-quality monitoring system was installed in Yunlin Offshore Industrial Park (YOIP), the largest industrial park in Taiwan, in 2007 to provide real-time water-quality information such as pH, water depth, dissolved oxygen, temperature, turbidity, conductivity, and chlorophyll. To interpret the large quantities of high-frequency data generated by this system, information theory was applied for data analysis and extraction of useful information for further coastal water-quality management. Information theory is a branch of applied mathematics that involves the quantification of information. Shannon entropy is a key measure of information that was calculated in this study to reveal the inherent uncertainty of water-quality information. The applicability of Shannon entropy for signaling possible coastal pollution events in the YOIP was explored and results showed that it provides new insight into the inherent uncertainty or randomness of the original data. Specially, when Shannon entropy was high, multiple instable readings were observed for turbidity and salinity. This indicates that Shannon entropy may be a useful new tool for exploratory data analysis. It can be used as a supplementary indicator along with the original environmental data to signify some episodes of water-quality degradation.


Subject(s)
Environmental Monitoring/methods , Water Pollutants/analysis , Water Pollution/statistics & numerical data , Conservation of Natural Resources , Industry/statistics & numerical data , Water Quality/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...