Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(26): 8089-8097, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38899810

ABSTRACT

To simulate a topological neural network handling weak signals via stochastic resonance (SR), it is necessary to introduce an inherent nonlinearity into nanoscale devices. We use the self-assembly method to successfully fabricate a phase-change quantum-dot string (PCQDS) crossing Pd/Nb:AlNO/AlNO/Nb:AlNO/Pd multilayer. The inherent nonlinearity of phase change couples with electron tunneling so that PCQDS responds to a long signal sequence in a modulated output style, in which the pulse pattern evolves to that enveloped by two sets of periodic wave characterized by neural action potential. We establish an SR mode consisting of several two-state systems in which dissipative tunneling is coupled to environment. Size oscillations owing to NbO QDs adaptively adjust barriers and wells, such that tunneling can be periodically modulated by either asymmetric energy or local temperature. When the external periodic signals are applied, the system first follows the forcing frequency. Subsequently, certain PCQDs oscillate independently and consecutively to produce complicated frequency and amplitude modulations.

2.
Sci Rep ; 14(1): 8106, 2024 04 06.
Article in English | MEDLINE | ID: mdl-38582913

ABSTRACT

Wheat head detection and counting using deep learning techniques has gained considerable attention in precision agriculture applications such as wheat growth monitoring, yield estimation, and resource allocation. However, the accurate detection of small and dense wheat heads remains challenging due to the inherent variations in their size, orientation, appearance, aspect ratios, density, and the complexity of imaging conditions. To address these challenges, we propose a novel approach called the Oriented Feature Pyramid Network (OFPN) that focuses on detecting rotated wheat heads by utilizing oriented bounding boxes. In order to facilitate the development and evaluation of our proposed method, we introduce a novel dataset named the Rotated Global Wheat Head Dataset (RGWHD). This dataset is constructed by manually annotating images from the Global Wheat Head Detection (GWHD) dataset with oriented bounding boxes. Furthermore, we incorporate a Path-aggregation and Balanced Feature Pyramid Network into our architecture to effectively extract both semantic and positional information from the input images. This is achieved by leveraging feature fusion techniques at multiple scales, enhancing the detection capabilities for small wheat heads. To improve the localization and detection accuracy of dense and overlapping wheat heads, we employ the Soft-NMS algorithm to filter the proposed bounding boxes. Experimental results indicate the superior performance of the OFPN model, achieving a remarkable mean average precision of 85.77% in oriented wheat head detection, surpassing six other state-of-the-art models. Moreover, we observe a substantial improvement in the accuracy of wheat head counting, with an accuracy of 93.97%. This represents an increase of 3.12% compared to the Faster R-CNN method. Both qualitative and quantitative results demonstrate the effectiveness of the proposed OFPN model in accurately localizing and counting wheat heads within various challenging scenarios.


Subject(s)
Agriculture , Triticum , Algorithms , Pyramidal Tracts , Resource Allocation
3.
Insects ; 14(11)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37999087

ABSTRACT

Maternally inherited obligate endosymbionts codiverge with their invertebrate hosts and reflect their host's evolutionary history. Whiteflies (Hemiptera: Aleyrodidae) harbor one obligate endosymbiont, Candidatus Portiera aleyrodidarum (hereafter Portiera). Portiera was anciently acquired by whitefly and has been coevolving with its host ever since. Uncovering the divergence of endosymbionts provides a fundamental basis for inspecting the coevolutionary processes between the bacteria and their hosts. To illustrate the divergence of Portiera lineages across different whitefly species, we sequenced the Portiera genome from Aleyrodes shizuokensis and conducted a comparative analysis on the basic features and gene evolution with bacterial genomes from five whitefly genera, namely Aleurodicus, Aleyrodes, Bemisia, Pealius, and Trialeurodes. The results indicated that Portiera from Bemisia possessed significantly larger genomes, fewer coding sequences (CDSs), and a lower coding density. Their gene arrangement differed notably from those of other genera. The phylogeny of the nine Portiera lineages resembled that of their hosts. Moreover, the lineages were classified into three distinct genetic groups based on the genetic distance, one from Aleurodicus (Aleurodicinae), one from Bemisia (Aleyrodinae), and another from Aleyrodes, Pealius, and Trialeurrodes (Aleyrodinae). Synonymous and nonsynonymous rate analyses, parity rule 2 plot analyses, neutrality plot analyses, and effective number of codons analyses supported the distinction of the three genetic groups. Our results indicated that Portiera from distant hosts exhibit distinct genomic contents, implying codivergence between hosts and their endosymbionts. This work will enhance our understanding of coevolution between hosts and their endosymbionts.

4.
Ultrason Sonochem ; 101: 106696, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37988957

ABSTRACT

To improve the protein dissolution rate and the quality of fresh Lycium barbarum pulp (LBP), we optimized the slit dual-frequency ultrasound-assisted pulping process, explored the dissolution kinetics of Lycium barbarum protein (LBPr), and established a near-infrared spectroscopy in situ real-time monitoring model for LBPr dissolution through spectral information analysis and chemometric methods. The results showed that under optimal conditions (dual-frequency 28-33 kHz, 300 W, 31 min, 40 °C, interval ratio 5:2 s/s), ultrasonic treatment not only significantly increased LBPr dissolution rate (increased by 71.48 %, p < 0.05), improved other nutrient contents and color, but also reduced the protein particle size, changed the amino acid composition ratio and protein structure, and increased the surface hydrophobicity, zeta potential, and free sulfhydryl content of protein, as well as the antioxidant activity of LBPr. In addition, ultrasonication significantly improved the functional properties of the protein, including thermal stability, foaming, emulsification and oil absorption capacity. Furthermore, the real-time monitoring model of the dissolution process was able to quantitatively predict the dissolution rate of LBPr with good calibration and prediction performance (Rc = 0.9835, RMSECV = 2.174, Rp = 0.9841, RMSEP = 1.206). These findings indicated that dual-frequency ultrasound has great potential to improve the quality of LBP and may provide a theoretical basis for the establishment of an intelligent control system in the industrialized production of LBP and the functional development of LBPr.


Subject(s)
Drugs, Chinese Herbal , Lycium , Antioxidants/chemistry , Lycium/chemistry , Lycium/metabolism , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/pharmacology
5.
Ultrason Sonochem ; 98: 106509, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37406542

ABSTRACT

In this study, the slit dual-frequency ultrasound-assisted pulping of fresh Lycium barbarum fruit was optimized to improve the dissolution of polysaccharides. The microscopic mechanism of polysaccharide dissolution was explored through establishing polysaccharides dissolution kinetics model and visualizing the multi-physical fields during ultrasonic process, and an in situ real-time monitoring model was established by the relationship between the chemical value and spectral information collected by near-infrared spectroscopy. The results showed that, under optimal conditions, treatment with ultrasound (28-33 kHz, 250 W, 30 min) not only significantly promoted the dissolution rate of polysaccharides in Lycium barbarum pulp (LBPPs, increased by 43.64 %, p < 0.01), reduced its molecular weight, but also improved the arabinose molar ratio, the uniformity of polysaccharide particles, and the antioxidant activity of LBPPs. Correlation analysis indicated that ultrasonic treatment is closely related to LBPPs content, particle size and scavenging capacity against superoxide anion radicals (ptotal sugar content < 0.01, pparticle size < 0.05 and psuperoxide anion scavenging < 0.05). Moreover, the in situ real-time monitoring model for the pulping process could quantitatively predict LBPPs dissolution rate and its superoxide anion radical scavenging capacity with good calibration and prediction performance (Rc = 0.9841, RMSECV = 0.0873, Rp = 0.9772, RMSEP = 0.0530; Rc = 0.9874, RMSECV = 0.1246, Rp = 0.9868, RMSEP = 0.0665). These results indicated that slit dual-frequency ultrasound has great potential in improving the quality of Lycium barbarum pulp, which may provide theoretical support for the industrial development of intelligent systems for polysaccharides preparation.


Subject(s)
Drugs, Chinese Herbal , Lycium , Lycium/chemistry , Superoxides , Fruit/chemistry , Solubility , Polysaccharides/chemistry , Drugs, Chinese Herbal/analysis
6.
Materials (Basel) ; 16(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37049008

ABSTRACT

The large thickness COPV is designed by netting theory and the finite element simulation method, but the actual performance is low and the cylinder performance still cannot be improved after increasing the thickness of the composite winding layer. This paper analyzes the reasons for this and puts forward a feasible solution: without changing the thickness of the winding layer, the performance of COPV can be effectively increased by increasing the proportion of annular winding fiber. This method has been verified by tests and is supported by theory.

7.
Polymers (Basel) ; 15(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36772026

ABSTRACT

Epoxy and epoxide composites have a wide range of outdoor applications wherein they are affected by ageing. In this study, epoxy casting plates and epoxy-based composite rods for use in overhead conductors were prepared. A concurrent investigation concerning the ageing of epoxy resins and their carbon fibre composites was carried out via artificially accelerated experiments under hygrothermal and salt mist conditions. The moisture penetration along the depth, water absorption, appearance, hardness, density of the epoxy resins, and variation patterns of the impact strength and tensile strength of the epoxy-based composites were investigated. The ageing mechanisms were explored using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Both ageing modes had essentially similar influences on the properties of the resins and their composites; moreover, they did not significantly affect the chemical structure and microstructure of the epoxy resin, with the physical adsorption of water primarily observed during the ageing process. The moisture absorption behaviour of the epoxy obeyed Fick's law. Although the water penetration rate in the salt mist ageing mode was slightly higher than that in the hygrothermal ageing mode during the early ageing stage, it was essentially the same during the later stage. The final moisture absorption rate at saturation was approximately 1.1% under both modes. The flexural strengths and impact strengths of the composites in both ageing modes followed a similar trend. They decreased gradually with the ageing time and then stabilized at almost the same value. The flexural strength was reduced from 803 MPa to 760 MPa and the impact strength from 383 J/m2 to 310 J/m2, indicating a decrease of approximately 5.4% and 19%, respectively. The absorbed water during the ageing process caused micro-cracks at the interface between the fibres and resin, weakening the interfacial strength and reducing the mechanical properties of the composites.

8.
Insects ; 14(2)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36835667

ABSTRACT

As insect infestation is the leading factor accounting for nutritive and economic losses in stored grains, it is important to detect the presence and number of insects for the sake of taking proper control measures. Inspired by the human visual attention mechanism, we propose a U-net-like frequency-enhanced saliency (FESNet) detection model, resulting in the pixelwise segmentation of grain pests. The frequency clues, as well as the spatial information, are leveraged to enhance the detection performance of small insects from the cluttered grain background. Firstly, we collect a dedicated dataset, GrainPest, with pixel-level annotation after analyzing the image attributes of the existing salient object detection datasets. Secondly, we design a FESNet with the discrete wavelet transformation (DWT) and the discrete cosine transformation (DCT), both involved in the traditional convolution layers. As current salient object detection models will reduce the spatial information with pooling operations in the sequence of encoding stages, a special branch of the discrete wavelet transformation (DWT) is connected to the higher stages to capture accurate spatial information for saliency detection. Then, we introduce the discrete cosine transform (DCT) into the backbone bottlenecks to enhance the channel attention with low-frequency information. Moreover, we also propose a new receptive field block (NRFB) to enlarge the receptive fields by aggregating three atrous convolution features. Finally, in the phase of decoding, we use the high-frequency information and aggregated features together to restore the saliency map. Extensive experiments and ablation studies on our dataset, GrainPest, and open dataset, Salient Objects in Clutter (SOC), demonstrate that the proposed model performs favorably against the state-of-the-art model.

9.
J Neurosci ; 43(5): 764-786, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36535771

ABSTRACT

The ellipsoid body (EB) is a major structure of the central complex of the Drosophila melanogaster brain. Twenty-two subtypes of EB ring neurons have been identified based on anatomic and morphologic characteristics by light-level microscopy and EM connectomics. A few studies have associated ring neurons with the regulation of sleep homeostasis and structure. However, cell type-specific and population interactions in the regulation of sleep remain unclear. Using an unbiased thermogenetic screen of EB drivers using female flies, we found the following: (1) multiple ring neurons are involved in the modulation of amount of sleep and structure in a synergistic manner; (2) analysis of data for ΔP(doze)/ΔP(wake) using a mixed Gaussian model detected 5 clusters of GAL4 drivers which had similar effects on sleep pressure and/or depth: lines driving arousal contained R4m neurons, whereas lines that increased sleep pressure had R3m cells; (3) a GLM analysis correlating ring cell subtype and activity-dependent changes in sleep parameters across all lines identified several cell types significantly associated with specific sleep effects: R3p was daytime sleep-promoting, and R4m was nighttime wake-promoting; and (4) R3d cells present in 5HT7-GAL4 and in GAL4 lines, which exclusively affect sleep structure, were found to contribute to fragmentation of sleep during both day and night. Thus, multiple subtypes of ring neurons distinctively control sleep amount and/or structure. The unique highly interconnected structure of the EB suggests a local-network model worth future investigation; understanding EB subtype interactions may provide insight how sleep circuits in general are structured.SIGNIFICANCE STATEMENT How multiple brain regions, with many cell types, can coherently regulate sleep remains unclear, but identification of cell type-specific roles can generate opportunities for understanding the principles of integration and cooperation. The ellipsoid body (EB) of the fly brain exhibits a high level of connectivity and functional heterogeneity yet is able to tune multiple behaviors in real-time, including sleep. Leveraging the powerful genetic tools available in Drosophila and recent progress in the characterization of the morphology and connectivity of EB ring neurons, we identify several EB subtypes specifically associated with distinct aspects of sleep. Our findings will aid in revealing the rules of coding and integration in the brain.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Female , Drosophila/metabolism , Drosophila melanogaster/physiology , Sleep/physiology , Neurons/physiology , Arousal/physiology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
10.
Molecules ; 27(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35889295

ABSTRACT

Wolfberry (Lycium barbarum L.) is a nutritious and medicinal fruit, and deeply processed products of wolfberry needs to be improved. In this study, nutrition, bioactive compounds, and hepaprotective activity were explored in wolfberry vinegar (WFV). The contents of nutrients including total sugar and protein in WFV samples were 2.46 and 0.27 g/100 mL, respectively. Total phenolic and flavonoid contents in WFV were 2.42 mg GAE/mL and 1.67 mg RE/mL, respectively. p-Hydroxybenzoic acid and m-hydroxycinnamic acid were the main polyphenols in WFV. The antioxidant activity of WFV were 20.176 mM Trolox/L (ABTS), 8.614 mM Trolox/L (FRAP), and 26.736 mM Trolox/L (DPPH), respectively. In addition, WFV treatment effectively alleviated liver injury by improving histopathological changes and reducing liver biochemical indexes in CCl4-treated mice. WFV alleviated oxidative damage by inhibiting oxidative levels and increasing antioxidant levels. These results suggest that WFV can be utilized as a functional food to prevent oxidative liver injury.


Subject(s)
Lycium , Acetic Acid/analysis , Animals , Antioxidants/analysis , Antioxidants/pharmacology , Fruit/chemistry , Lycium/chemistry , Mice , Plant Extracts/chemistry
11.
Mol Diagn Ther ; 26(3): 345-352, 2022 05.
Article in English | MEDLINE | ID: mdl-35430704

ABSTRACT

BACKGROUND: Mycoplasma pneumoniae (MP) is the most common pathogen of atypical pneumonia and the main cause of community-acquired pneumonia (CAP) in infants and older adults. This study aimed at investigating a method based on the cross-priming amplification (CPA) technique for the rapid detection of MP in clinical specimens collected from patients with CAP. METHODS: The sensitivity and specificity of the EasyNAT MP assay were determined. Oropharyngeal swab specimens were collected from 162 in-patients of Hangzhou First People's Hospitals from January 2018 to December 2020. The patients were aged between 1 and 15 years with symptoms, signs, and chest radiographs consistent with CAP. This study evaluated the presence of MP in the clinical specimens using the EasyNAT method and the conventional fluorescence quantitative PCR technique. RESULTS: The limit of detection using the EasyNAT MP assay was 500 copies/mL, while the test results of the other 13 common pathogens causing CAP or colonizing in the upper respiratory tract showed no cross-reactivity. Of 162 specimens, EasyNAT MP gave a positive indication in 82 specimens. Compared with conventional fluorescence quantitative PCR, the positive coincidence rate and the negative coincidence rate of EasyNAT MP was found to be 100.00% and 97.56%, respectively. Of the 82 specimens, two specimens were determined to be negative by the conventional fluorescence quantitative PCR, but were positive for EasyNAT MP. The two samples were re-extracted and confirmed to be positive by conventional fluorescence quantitative PCR. CONCLUSION: EasyNAT MP is suitable as an initial test for MP diagnosis due to its simplicity, low turnaround time, and high sensitivity and specificity.


Subject(s)
Community-Acquired Infections , Pneumonia, Mycoplasma , Adolescent , Aged , Child , Child, Preschool , Cross-Priming , Humans , Infant , Mycoplasma pneumoniae/genetics , Pneumonia, Mycoplasma/diagnosis , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Technology
12.
Bioengineered ; 13(3): 6567-6578, 2022 03.
Article in English | MEDLINE | ID: mdl-35227173

ABSTRACT

This study explored the function and mechanisms of HOX transcript antisense RNA (HOTAIR) in the drug resistance of nasopharyngeal carcinoma (NPC). Quantitative PCR, Western blotting, MTT assay, flow cytometry, Transwell assay, and luciferase assay were performed. HOTAIR expression levels were upregulated in cisplatin (DDP)-resistant NPC tissues and cells. Knockdown of HOTAIR in DDP-resistant NPC cells increased cell sensitivity of DDP, as well as decreased cell viability, expression of chemoresistance-related proteins, migration and invasion, increased cell apoptosis. In addition, downregulation of microRNA 106a-5p (miR-106a-5p) expression and upregulation of SRY-box transcription factor 4 (SOX4) expression were observed in DDP-resistant NPC tissues and cells. MiR-106a-5p targets HOTAIR and SOX4; thus, silencing of HOTAIR significantly increased miR-106a-5p expression. The overexpression of miR-106a-5p significantly reversed the increase in SOX4 expression induced by HOTAIR lentivirus (Lv-HOTAIR). Knockdown of SOX4 reduced the drug resistance of DDP caused by the silencing of miR-106a-5p expression. In summary, HOTAIR enhanced DDP resistance in NPC cells by regulating the miR-106a-5p/SOX4 axis.


Subject(s)
Cisplatin/pharmacology , MicroRNAs/genetics , Nasopharyngeal Carcinoma , RNA, Long Noncoding/genetics , SOXC Transcription Factors/genetics , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Humans , Mice , Mice, Nude , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Nasopharynx
13.
Small ; 18(11): e2105070, 2022 03.
Article in English | MEDLINE | ID: mdl-35048484

ABSTRACT

One of the important steps for realizing artificial intelligence is identifying elementary units that are beneficial for neural network construction. A type of memristive behavior in which phase-change nanoclusters nucleate adaptively in two adjacent dielectric layers with distinct distribution patterns is demonstrated. This memristive system responds in potentiation to increased stimulation strength and fire action potential after threshold stimulation. Reversible nucleation of phase-change nanoclusters is confirmed after both in situ and ex situ examinations using high-resolution transmission electron microscopy. The dynamics at the nanoscale level dominates the actions of the two dielectric layers. The oscillation response over a long period is due to the competition between crystalline and amorphous phases in the layer near the bottom electrode. Weight mutation, that is, action potential firing, is caused by the blockage of the filament in the layer near the top electrode. The memristive system is compact and able to execute complicated functions of a complete neuron and performs an important role in neuromorphic computing.


Subject(s)
Artificial Intelligence , Neural Networks, Computer , Action Potentials , Neurons/physiology
14.
J Fish Dis ; 44(11): 1753-1763, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34237791

ABSTRACT

Shrimp is a globally popular seafood. Shrimp farming has been challenged by various infectious diseases that lead to significant economic losses. The prevention of two important shrimp infectious diseases, the acute hepatopancreatic necrosis disease (AHPND) and the Enterocytozoon hepatopenaei (EHP) infection, is highly dependent on early and accurate diagnostic. On-site monitoring of the two diseases in shrimp farming facilities demands point-of-care-testing (POCT) type of diagnostic assays. This study established a duplex recombinase polymerase amplification (RPA) and lateral flow dipstick (LFD) combined assay that could simultaneously diagnose the two diseases. The optimized RPA-LFD assay could finish the diagnostic in 35 min with good specificity, and the sensitivity reached 101 and 102 gene copies per reaction for EHP and AHPND, respectively, which were at the same level as the currently available molecular diagnostic assays. Test results of clinical samples showed 100% agreement of this assay with the industrial standard nested polymerase chain reaction (PCR) assays, and samples with both diseases were simultaneously identified. Because of the isothermal 37℃ amplification and the visual reading of the signal on dipsticks, the dependence on equipment is minimal. This duplex RPA-LFD assay is well suited for simultaneous POCT diagnostic of the two important shrimp infectious diseases. Moreover, the principle can be applied to multiplex POCT diagnostic of other infectious diseases in aquaculture.


Subject(s)
Enterocytozoon/pathogenicity , Microsporidiosis/veterinary , Necrosis/veterinary , Nucleic Acid Amplification Techniques/veterinary , Penaeidae/microbiology , Animals , Aquaculture , DNA Primers , DNA Probes , Nucleic Acid Amplification Techniques/methods , Polymerase Chain Reaction/veterinary , Sensitivity and Specificity , Vibrio parahaemolyticus/pathogenicity
15.
Biosensors (Basel) ; 11(5)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066017

ABSTRACT

Vibrio cholerae and Vibrio vulnificus are two most reported foodborne Vibrio pathogens related to seafood. Due to global ocean warming and an increase in seafood consumption worldwide, foodborne illnesses related to infection of these two bacteria are growing, leading to food safety issues and economic consequences. Molecular detection methods targeting species-specific genes are effective tools in the fight against bacterial infections for food safety. In this study, a duplex detection biosensor based on isothermal recombinase polymerase amplification (RPA) and a three-segment lateral flow strip (LFS) has been established. The biosensor used lolB gene of Vibrio cholerae and empV gene of Vibrio vulnificus as the detection markers based on previous reports. A duplex RPA reaction for both targets were constructed, and two chemical labels, FITC and DIG, of the amplification products were carefully tested for effective and accurate visualization on the strip. The biosensor demonstrated good specificity and achieved a sensitivity of 101 copies per reaction or one colony forming unit (CFU)/10 g of spiked food for both bacteria. Validation with clinical samples showed results consistent with that of real-time polymerase chain reaction. The detection process was simple and fast with a 30-min reaction at 37 °C and visualization on the strip within 5 min. With little dependence on laboratory settings, this biosensor was suitable for on-site detection, and the duplex system enabled simultaneous detection of the two important foodborne bacteria. Moreover, the principle can be extended to healthcare and food safety applications for other pathogens.


Subject(s)
Nucleic Acid Amplification Techniques , Recombinases , Vibrio cholerae/isolation & purification , Vibrio vulnificus/isolation & purification , Food Microbiology , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity
16.
Chemosphere ; 281: 130868, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34010720

ABSTRACT

In this paper, a simple and efficient regeneration technology of low-temperature pickling regeneration process is proposed for Cu(II)-adsorbed activated carbon fiber felts (ACFFs). The regeneration process mainly uses the strong oxidation of acidic regenerant above boiling point to regenerate ACFFs in a confined space. With no demand for high temperature and high pressure, the regeneration process achieves a high efficiency regeneration and a remarkable enhancement of Cu(II) adsorptivity simultaneously for Cu(II)-adsorbed ACFFs. After parameter optimization, the pickling temperature of 383 K, pickling time of 3 h and HNO3 concentration of 150 g/L are adopted as optimum process parameters for the reutilization of ACFFs. The regeneration rates of ACFFs in five cycles are maintained at 424.08%-829.59%. Analytical results show that the enhancement of Cu(II) adsorptivity is mainly caused by the remarkable enhancement of specific surface area (increased by 106.08%), micropore volume (increased by 102.17%) and more abundant surface chemical structure (particularly carboxyl and nitro group) after treated by the regeneration process.


Subject(s)
Charcoal , Adsorption , Carbon Fiber , Oxidation-Reduction , Temperature
17.
Food Res Int ; 140: 110064, 2021 02.
Article in English | MEDLINE | ID: mdl-33648287

ABSTRACT

Zhenjiang aromatic vinegar (ZAV), a traditional fermented food in China, is rich in polyphenols with health-beneficial effects. In this study, vinegar extract ameliorated ethanol-induced liver injury by reducing the levels of oxidative stress biomarkers. In addition, vinegar extract regulated gut microbiota composition and immune factors, and improved antimicrobial peptides (Reg3b and Reg3g) and intestinal homeostasis in ethanol-treated mice. Vinegar extract suppressed lipopolysaccharide (LPS)-mediated inflammatory response in the liver and gut of ethanol-treated mice. Moreover, Akkermansia, Lachnospiraceae_NK4A136_group and Bacteroidetes showed a positive correlation with intestinal immune factors and antimicrobial peptides, and a negative correlation with parameters of oxidative stress and inflammation. In contrast, Firmicutes, Proteobacteria, Bilophila and Butyricimonas showed the opposite correlation with these parameters. Our study provides a new sight into vinegar extract for the prevention of ethanol-induced liver damage via modulation of gut-liver axis.


Subject(s)
Gastrointestinal Microbiome , Polyphenols , Acetic Acid , Animals , China , Ethanol , Inflammation/chemically induced , Inflammation/prevention & control , Mice , Plant Extracts/pharmacology , Polyphenols/analysis , Polyphenols/pharmacology
18.
ACS Appl Mater Interfaces ; 13(14): 16846-16858, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33784813

ABSTRACT

Graphene oxide (GO) has been widely used as an additive of polyacrylonitrile (PAN)-based carbon nanofibers (CNFs) to optimize its crystal structure and improve the mechanical performances of nanofibers. However, the homogeneous dispersion of GO nanosheets among entangled PAN molecular chains is always challenging, and the poor dispersion of GO severely limits its positive effects on both the structure and performances of CNFs. Considering this issue, this paper provides for the first time an effective solution to achieve rapid and uniform introduction of GO in PAN-based nanofibers via in situ polymerization, and the optimization of the nanofiber structure by GO is systematically studied in three consecutive stages (polymerization, electrospinning, and carbonization) of the production process. During in situ polymerization, PAN is tightly attached on GO nanosheets to form PAN/GO nanocomposites, and this interaction is maintained throughout the spinning process. Not only the arrangement of PAN molecular chains but also the crystal size of the final turbostratic structure of CNFs is considerably improved by the interaction between PAN and GO. Besides, the direct proof that GO nanosheets promote the crystallization and orientation of the nanofiber matrix is presented. As a result, the tensile strength of CNFs is remarkably increased by 2.45 times with 0.5 wt % addition of GO. In summary, this paper provides a method for efficiently introducing nanoscale additives into PAN-based nanofibers and gives insights into the production of high-performance CNFs with the addition of GO.

19.
J Neurosci ; 40(47): 9066-9077, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33106351

ABSTRACT

Dissociation between the output of the circadian clock and external environmental cues is a major cause of human cognitive dysfunction. While the effects of ablation of the molecular clock on memory have been studied in many systems, little has been done to test the role of specific clock circuit output signals. To address this gap, we examined the effects of mutations of Pigment-dispersing factor (Pdf) and its receptor, Pdfr, on associative memory in male and female Drosophila Loss of PDF signaling significantly decreases the ability to form associative memory. Appetitive short-term memory (STM), which in wild-type (WT) is time-of-day (TOD) independent, is decreased across the day by mutation of Pdf or Pdfr, but more substantially in the morning than in the evening. This defect is because of PDFR expression in adult neurons outside the core clock circuit and the mushroom body (MB) Kenyon cells (KCs). The acquisition of a TOD difference in mutants implies the existence of multiple oscillators that act to normalize memory formation across the day for appetitive processes. Interestingly, aversive STM requires PDF but not PDFR, suggesting that there are valence-specific pathways downstream of PDF that regulate memory formation. These data argue that the circadian clock uses circuit-specific and molecularly diverse output pathways to enhance the ability of animals to optimize responses to changing conditions.SIGNIFICANCE STATEMENT From humans to invertebrates, cognitive processes are influenced by organisms' internal circadian clocks, the pace of which is linked to the solar cycle. Disruption of this link is increasingly common (e.g., jetlag, social jetlag disorders) and causes cognitive impairments that are costly and long lasting. A detailed understanding of how the internal clock regulates cognition is critical for the development of therapeutic methods. Here, we show for the first time that olfactory associative memory in Drosophila requires signaling by Pigment-dispersing factor (PDF), a neuromodulatory signaling peptide produced only by circadian clock circuit neurons. We also find a novel role for the clock circuit in stabilizing appetitive sucrose/odor memory across the day.


Subject(s)
Association Learning/physiology , Drosophila Proteins/physiology , Memory/physiology , Neuropeptides/physiology , Smell/physiology , Animals , Appetite/physiology , Avoidance Learning/physiology , Circadian Clocks , Circadian Rhythm , Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Female , Male , Memory, Short-Term/physiology , Mushroom Bodies/physiology , Mutation , Neurons/physiology , Neuropeptides/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/physiology
20.
Materials (Basel) ; 13(7)2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32244389

ABSTRACT

The heat resistant aluminum alloy wire composite material core conductor (ACCC/HW) which was used in overhead transmission lines is developed and studied in this work. The composite material core is carbon fiber/glass cloth reinforced modified epoxy resin composite. Tensile stress tests and stress-strain tests of both composite core and conductor are taken at 25 °C and 160 °C. Sag test, creep test and current carrying capacity test of composite conductor are taken. The stress of composite conductor are 425.2 MPa and 366.9 MPa at 25 °C and 160 °C, respectively. The sag of conductor of 50 m length are 95 mm, 367 mm, and 371 mm at 25 °C, 110 °C, and 160 °C, respectively. The creep strain are 271 mm/km, 522 mm/km, and 867 mm/km after 10 years under the tension of 15% RTS (Rated Tensile Strength), 25% RTS and 35% RTS at 25 °C, and 628 mm/km under 25% RTS at 160 °C, according to the test result and calculation. The carrying capacity of composite conductor is basically equivalent to ACSR (Aluminum Conductor Steel Reinforced). ACCC/HW is suitable in overhead transmission lines, and it has been used in 50 kV power grid, according to the results.

SELECTION OF CITATIONS
SEARCH DETAIL
...