Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Cell ; 187(11): 2855-2874.e19, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38657603

ABSTRACT

Progress in understanding early human development has been impeded by the scarcity of reference datasets from natural embryos, particularly those with spatial information during crucial stages like gastrulation. We conducted high-resolution spatial transcriptomics profiling on 38,562 spots from 62 transverse sections of an intact Carnegie stage (CS) 8 human embryo. From this spatial transcriptomic dataset, we constructed a 3D model of the CS8 embryo, in which a range of cell subtypes are identified, based on gene expression patterns and positional register, along the anterior-posterior, medial-lateral, and dorsal-ventral axis in the embryo. We further characterized the lineage trajectories of embryonic and extra-embryonic tissues and associated regulons and the regionalization of signaling centers and signaling activities that underpin lineage progression and tissue patterning during gastrulation. Collectively, the findings of this study provide insights into gastrulation and post-gastrulation development of the human embryo.


Subject(s)
Embryo, Mammalian , Gastrulation , Gene Expression Regulation, Developmental , Imaging, Three-Dimensional , Humans , Embryo, Mammalian/metabolism , Transcriptome/genetics , Gastrula/metabolism , Gastrula/embryology , Signal Transduction , Cell Lineage , Gene Expression Profiling , Body Patterning/genetics
2.
bioRxiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38260472

ABSTRACT

Many neurodevelopmental defects are linked to perturbations in genes involved in housekeeping functions, such as those encoding ribosome biogenesis factors. However, how reductions in ribosome biogenesis can result in tissue and developmental specific defects remains a mystery. Here we describe new allelic variants in the ribosome biogenesis factor AIRIM primarily associated with neurodevelopmental disorders. Using human cerebral organoids in combination with proteomic analysis, single-cell transcriptome analysis across multiple developmental stages, and single organoid translatome analysis, we identify a previously unappreciated mechanism linking changes in ribosome levels and the timing of cell fate specification during early brain development. We find ribosome levels decrease during neuroepithelial differentiation, making differentiating cells particularly vulnerable to perturbations in ribosome biogenesis during this time. Reduced ribosome availability more profoundly impacts the translation of specific transcripts, disrupting both survival and cell fate commitment of transitioning neuroepithelia. Enhancing mTOR activity by both genetic and pharmacologic approaches ameliorates the growth and developmental defects associated with intellectual disability linked variants, identifying potential treatment options for specific brain ribosomopathies. This work reveals the cellular and molecular origins of protein synthesis defect-related disorders of human brain development. Highlights: AIRIM variants reduce ribosome levels specifically in neural progenitor cells. Inappropriately low ribosome levels cause a transient delay in radial glia fate commitment.Reduced ribosome levels impair translation of a selected subset of mRNAs.Genetic and pharmacologic activation of mTORC1 suppresses AIRIM-linked phenotypes.

3.
Methods Mol Biol ; 2767: 1-18, 2024.
Article in English | MEDLINE | ID: mdl-37351840

ABSTRACT

Under certain culture conditions, naive human pluripotent stem cells can generate human blastocyst-like structures (called human blastoids). Human blastoids serve as an accessible model for human blastocysts and are amenable for large-scale production. Here, we describe a detailed step-by-step protocol for the robust and high-efficient generation of human blastoids from naive human pluripotent stem cells.


Subject(s)
Pluripotent Stem Cells , Humans , Blastocyst , Cell Differentiation
4.
Cell ; 186(26): 5859-5875.e24, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38052213

ABSTRACT

Embryogenesis necessitates harmonious coordination between embryonic and extraembryonic tissues. Although stem cells of both embryonic and extraembryonic origins have been generated, they are grown in different culture conditions. In this study, utilizing a unified culture condition that activates the FGF, TGF-ß, and WNT pathways, we have successfully derived embryonic stem cells (FTW-ESCs), extraembryonic endoderm stem cells (FTW-XENs), and trophoblast stem cells (FTW-TSCs) from the three foundational tissues of mouse and cynomolgus monkey (Macaca fascicularis) blastocysts. This approach facilitates the co-culture of embryonic and extraembryonic stem cells, revealing a growth inhibition effect exerted by extraembryonic endoderm cells on pluripotent cells, partially through extracellular matrix signaling. Additionally, our cross-species analysis identified both shared and unique transcription factors and pathways regulating FTW-XENs. The embryonic and extraembryonic stem cell co-culture strategy offers promising avenues for developing more faithful embryo models and devising more developmentally pertinent differentiation protocols.


Subject(s)
Embryo, Mammalian , Embryonic Stem Cells , Animals , Coculture Techniques , Macaca fascicularis , Embryonic Stem Cells/metabolism , Cell Differentiation , Endoderm/metabolism , Cell Lineage
5.
Cell Stem Cell ; 30(9): 1246-1261.e9, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37683605

ABSTRACT

Recent advances in human blastoids have opened new avenues for modeling early human development and implantation. One limitation of our first protocol for human blastoid generation was relatively low efficiency. We now report an optimized protocol for the efficient generation of large quantities of high-fidelity human blastoids from naive pluripotent stem cells. This enabled proteomics analysis that identified phosphosite-specific signatures potentially involved in the derivation and/or maintenance of the signaling states in human blastoids. Additionally, we uncovered endometrial stromal effects in promoting trophoblast cell survival, proliferation, and syncytialization during co-culture with blastoids and blastocysts. Side-by-side single-cell RNA sequencing revealed similarities and differences in transcriptome profiles between pre-implantation blastoids and blastocysts, as well as post-implantation cultures, and uncovered a population resembling early migratory trophoblasts during co-culture with endometrial stromal cells. Our optimized protocol will facilitate broader use of human blastoids as an accessible, perturbable, scalable, and tractable model for human blastocysts.


Subject(s)
Embryo Implantation , Signal Transduction , Humans , Blastocyst , Cell Survival , Trophoblasts
6.
Methods Mol Biol ; 2677: 269-280, 2023.
Article in English | MEDLINE | ID: mdl-37464248

ABSTRACT

Dynamic pluripotent stem cell (PSC) states are in vitro adaptations of the pluripotency continuum in vivo. Previous studies have generated a number of PSCs with distinct properties. By modulating the FGF, TGF-ß, and WNT pathways, we have derived intermediate PSCs (FTW-PSCs) that are permissive for direct primordial germ cell-like cell (PGC-LC) induction in vitro. Here, we describe the method for derivation and maintenance of mouse and human FTW-PSCs, as well as PGC-LC induction from FTW-PSCs.


Subject(s)
Pluripotent Stem Cells , Humans , Pluripotent Stem Cells/metabolism , Germ Cells/metabolism , Cell Differentiation
7.
Cell Stem Cell ; 30(5): 611-616.e7, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37146582

ABSTRACT

Understanding the mechanisms of blastocyst formation and implantation is critical for improving farm animal reproduction but is hampered by a limited supply of embryos. Here, we developed an efficient method to generate bovine blastocyst-like structures (termed blastoids) via assembling bovine trophoblast stem cells and expanded potential stem cells. Bovine blastoids resemble blastocysts in morphology, cell composition, single-cell transcriptomes, in vitro growth, and the ability to elicit maternal recognition of pregnancy following transfer to recipient cows. Bovine blastoids represent an accessible in vitro model for studying embryogenesis and improving reproductive efficiency in livestock species.


Subject(s)
Blastocyst , Trophoblasts , Pregnancy , Female , Cattle , Animals , Embryo Implantation , Embryonic Development , Stem Cells , Cell Culture Techniques
8.
Cell Rep ; 42(5): 112439, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37146606

ABSTRACT

Here, we report that a chemical cocktail (LCDM: leukemia inhibitory factor [LIF], CHIR99021, dimethinedene maleate [DiM], minocycline hydrochloride), previously developed for extended pluripotent stem cells (EPSCs) in mice and humans, enables de novo derivation and long-term culture of bovine trophoblast stem cells (TSCs). Bovine TSCs retain developmental potency to differentiate into mature trophoblast cells and exhibit transcriptomic and epigenetic (chromatin accessibility and DNA methylome) features characteristic of trophectoderm cells from early bovine embryos. The bovine TSCs established in this study will provide a model to study bovine placentation and early pregnancy failure.


Subject(s)
Pluripotent Stem Cells , Trophoblasts , Pregnancy , Humans , Female , Animals , Cattle , Mice , Cell Differentiation/genetics , Placentation
9.
Cell Prolif ; 56(5): e13492, 2023 May.
Article in English | MEDLINE | ID: mdl-37199067

ABSTRACT

The interactions between extra-embryonic tissues and embryonic tissues are crucial to ensure proper early embryo development. However, the understanding of the crosstalk between the embryonic tissues and extra-embryonic tissues is lacking, mainly due to ethical restrictions, difficulties in obtaining natural human embryos, and lack of appropriate in vitro models. Here by aggregating human embryonic stem cells (hESCs) with human trophoblast stem cells (hTSCs), we revealed the hESCs robustly self-organized into a unique asymmetric structure which the primitive streak (PS) like cells exclusively distributed at the distal end to the TS-compartment, and morphologically flattened cells, presumed to be the extra-embryonic mesoderm cells (EXMC) like cells, were induced at the proximal end to hTSCs. Our study revealed two potential roles of extra-embryonic trophectoderm in regulating the proper PS formation during gastrulation and EXMCs induction from the human epiblast.


Subject(s)
Gastrula , Trophoblasts , Humans , Gastrula/physiology , Germ Layers , Cell Differentiation , Stem Cells
10.
bioRxiv ; 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36945498

ABSTRACT

Faithful embryogenesis requires precise coordination between embryonic and extraembryonic tissues. Although stem cells from embryonic and extraembryonic origins have been generated for several mammalian species(Bogliotti et al., 2018; Choi et al., 2019; Cui et al., 2019; Evans and Kaufman, 1981; Kunath et al., 2005; Li et al., 2008; Martin, 1981; Okae et al., 2018; Tanaka et al., 1998; Thomson et al., 1998; Vandevoort et al., 2007; Vilarino et al., 2020; Yu et al., 2021b; Zhong et al., 2018), they are grown in different culture conditions with diverse media composition, which makes it difficult to study cross-lineage communication. Here, by using the same culture condition that activates FGF, TGF-ß and WNT signaling pathways, we derived stable embryonic stem cells (ESCs), extraembryonic endoderm stem cells (XENs) and trophoblast stem cells (TSCs) from all three founding tissues of mouse and cynomolgus monkey blastocysts. This allowed us to establish embryonic and extraembryonic stem cell co-cultures to dissect lineage crosstalk during early mammalian development. Co-cultures of ESCs and XENs uncovered a conserved and previously unrecognized growth inhibition of pluripotent cells by extraembryonic endoderm cells, which is in part mediated through extracellular matrix signaling. Our study unveils a more universal state of stem cell self-renewal stabilized by activation, as opposed to inhibition, of developmental signaling pathways. The embryonic and extraembryonic stem cell co-culture strategy developed here will open new avenues for creating more faithful embryo models and developing more developmentally relevant differentiation protocols.

11.
Cell Rep ; 42(1): 112021, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36848234

ABSTRACT

Different formative pluripotent stem cells harboring similar functional properties have been recently established to be lineage neutral and germline competent yet have distinct molecular identities. Here, we show that WNT/ß-catenin signaling activation sustains transient mouse epiblast-like cells as epiblast-like stem cells (EpiLSCs). EpiLSCs display metastable formative pluripotency with bivalent cellular energy metabolism and unique transcriptomic features and chromatin accessibility. We develop single-cell stage label transfer (scSTALT) to study the formative pluripotency continuum and reveal that EpiLSCs recapitulate a unique developmental period in vivo, filling the gap of the formative pluripotency continuum between other published formative stem cells. WNT/ß-catenin signaling activation counteracts differentiation effects of activin A and bFGF by preventing complete dissolution of naive pluripotency regulatory network. Moreover, EpiLSCs have direct competence toward germline specification, which is further matured by an FGF receptor inhibitor. Our EpiLSCs can serve as an in vitro model for mimicking and studying early post-implantation development and pluripotency transition.


Subject(s)
Pluripotent Stem Cells , Wnt Signaling Pathway , Animals , Mice , beta Catenin , Cell Differentiation , Germ Cells , Germ Layers
13.
Nature ; 591(7851): 620-626, 2021 03.
Article in English | MEDLINE | ID: mdl-33731924

ABSTRACT

Limited access to embryos has hampered the study of human embryogenesis and disorders that occur during early pregnancy. Human pluripotent stem cells provide an alternative means to study human development in a dish1-7. Recent advances in partial embryo models derived from human pluripotent stem cells have enabled human development to be examined at early post-implantation stages8-14. However, models of the pre-implantation human blastocyst are lacking. Starting from naive human pluripotent stem cells, here we developed an effective three-dimensional culture strategy with successive lineage differentiation and self-organization to generate blastocyst-like structures in vitro. These structures-which we term 'human blastoids'-resemble human blastocysts in terms of their morphology, size, cell number, and composition and allocation of different cell lineages. Single-cell RNA-sequencing analyses also reveal the transcriptomic similarity of blastoids to blastocysts. Human blastoids are amenable to embryonic and extra-embryonic stem cell derivation and can further develop into peri-implantation embryo-like structures in vitro. Using chemical perturbations, we show that specific isozymes of protein kinase C have a critical function in the formation of the blastoid cavity. Human blastoids provide a readily accessible, scalable, versatile and perturbable alternative to blastocysts for studying early human development, understanding early pregnancy loss and gaining insights into early developmental defects.


Subject(s)
Blastocyst/cytology , Blastocyst/metabolism , Cell Differentiation , Pluripotent Stem Cells/cytology , Blastocyst/enzymology , Cell Culture Techniques/methods , Cell Line , Cell Lineage , Gene Expression Regulation, Developmental , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/enzymology , Human Embryonic Stem Cells/metabolism , Humans , Isoenzymes/metabolism , Pluripotent Stem Cells/enzymology , Pluripotent Stem Cells/metabolism , Protein Kinase C/metabolism , Single-Cell Analysis , Transcriptome
15.
Cell Discov ; 7(1): 8, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33531465

ABSTRACT

Interspecies blastocyst complementation enables organ-specific enrichment of xenogeneic pluripotent stem cell (PSC) derivatives, which raises an intriguing possibility to generate functional human tissues/organs in an animal host. However, differences in embryo development between human and host species may constitute the barrier for efficient chimera formation. Here, to understand these differences we constructed a complete single-cell landscape of early embryonic development of pig, which is considered one of the best host species for human organ generation, and systematically compared its epiblast development with that of human and monkey. Our results identified a developmental coordinate of pluripotency spectrum among pigs, humans and monkeys, and revealed species-specific differences in: (1) pluripotency progression; (2) metabolic transition; (3) epigenetic and transcriptional regulations of pluripotency; (4) cell surface proteins; and (5) trophectoderm development. These differences may prevent proper recognition and communication between donor human cells and host pig embryos, resulting in low integration and survival of human cells. These results offer new insights into evolutionary conserved and divergent processes during mammalian development and may be helpful for developing effective strategies to overcome low human-pig chimerism, thereby enabling the generation of functional human organs in pigs in the future.

16.
Nature ; 592(7853): 272-276, 2021 04.
Article in English | MEDLINE | ID: mdl-33508854

ABSTRACT

Cell competition involves a conserved fitness-sensing process during which fitter cells eliminate neighbouring less-fit but viable cells1. Cell competition has been proposed as a surveillance mechanism to ensure normal development and tissue homeostasis, and has also been suggested to act as a barrier to interspecies chimerism2. However, cell competition has not been studied in an interspecies context during early development owing to the lack of an in vitro model. Here we developed an interspecies pluripotent stem cell (PSC) co-culture strategy and uncovered a previously unknown mode of cell competition between species. Interspecies competition between PSCs occurred in primed but not naive pluripotent cells, and between evolutionarily distant species. By comparative transcriptome analysis, we found that genes related to the NF-κB signalling pathway, among others, were upregulated in less-fit 'loser' human cells. Genetic inactivation of a core component (P65, also known as RELA) and an upstream regulator (MYD88) of the NF-κB complex in human cells could overcome the competition between human and mouse PSCs, thereby improving the survival and chimerism of human cells in early mouse embryos. These insights into cell competition pave the way for the study of evolutionarily conserved mechanisms that underlie competitive cell interactions during early mammalian development. Suppression of interspecies PSC competition may facilitate the generation of human tissues in animals.


Subject(s)
Cell Competition/physiology , Chimerism , Coculture Techniques/methods , Embryo, Mammalian/cytology , Pluripotent Stem Cells/cytology , Animals , Cell Count , Cell Survival , Female , Humans , Male , Mice , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Signal Transduction , Species Specificity , Transcription Factor RelA/metabolism
17.
Cell Stem Cell ; 28(3): 550-567.e12, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33271070

ABSTRACT

Dynamic pluripotent stem cell (PSC) states are in vitro adaptations of pluripotency continuum in vivo. Previous studies have generated a number of PSCs with distinct properties. To date, however, no known PSCs have demonstrated dual competency for chimera formation and direct responsiveness to primordial germ cell (PGC) specification, a unique functional feature of formative pluripotency. Here, by modulating fibroblast growth factor (FGF), transforming growth factor ß (TGF-ß), and WNT pathways, we derived PSCs from mice, horses, and humans (designated as XPSCs) that are permissive for direct PGC-like cell induction in vitro and are capable of contributing to intra- or inter-species chimeras in vivo. XPSCs represent a pluripotency state between naive and primed pluripotency and harbor molecular, cellular, and phenotypic features characteristic of formative pluripotency. XPSCs open new avenues for studying mammalian pluripotency and dissecting the molecular mechanisms governing PGC specification. Our method may be broadly applicable for the derivation of analogous stem cells from other mammalian species.


Subject(s)
Pluripotent Stem Cells , Animals , Cell Differentiation , Chimera , Germ Cells , Horses , Mice
18.
Reproduction ; 160(5): 761-772, 2020 11.
Article in English | MEDLINE | ID: mdl-33065542

ABSTRACT

Until recently, it has been difficult to derive and maintain stable embryonic stem cells lines from livestock species. Sheep ESCs with characteristics similar to those described for rodents and primates have not been produced. We report the derivation of sheep ESCs under a chemically defined culture system containing fibroblast growth factor 2 (FGF2) and a tankyrase/Wnt inhibitor (IWR1). We also show that several culture conditions used for stabilizing naïve and intermediate pluripotency states in humans and mice were unsuitable to maintain ovine pluripotency in vitro. Sheep ESCs display a smooth dome-shaped colony morphology, and maintain an euploid karyotype and stable expression of pluripotency markers after more than 40 passages. We further demonstrate that IWR1 and FGF2 are essential for the maintenance of an undifferentiated state in de novo derived sheep ESCs. The derivation of stable pluripotent cell lines from sheep blastocysts represents a step forward toward understanding pluripotency regulation in livestock species and developing novel biomedical and agricultural applications.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/cytology , Fibroblast Growth Factor 2/metabolism , Pluripotent Stem Cells/cytology , Animals , Blastocyst/cytology , Blastocyst/metabolism , Cells, Cultured , Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Sheep
19.
Commun Biol ; 3(1): 122, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32170165

ABSTRACT

Directed differentiation methods allow acquisition of high-purity cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs); however, their immaturity characteristic limits their application for drug screening and regenerative therapy. The rapid electrical pacing of cardiomyocytes has been used for efficiently promoting the maturation of cardiomyocytes, here we describe a simple device in modified culture plate on which hiPSC-derived cardiomyocytes can form three-dimensional self-organized tissue rings (SOTRs). Using calcium imaging, we show that within the ring, reentrant waves (ReWs) of action potential spontaneously originated and ran robustly at a frequency up to 4 Hz. After 2 weeks, SOTRs with ReWs show higher maturation including structural organization, increased cardiac-specific gene expression, enhanced Ca2+-handling properties, an increased oxygen-consumption rate, and enhanced contractile force. We subsequently use a mathematical model to interpret the origination, propagation, and long-term behavior of the ReWs within the SOTRs.


Subject(s)
Action Potentials/drug effects , Cell Culture Techniques/methods , Cell Differentiation/physiology , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/cytology , Caffeine/pharmacology , Calcium/metabolism , Cells, Cultured , Humans , Mitochondria/metabolism , Models, Theoretical
20.
Cell ; 179(3): 687-702.e18, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31626770

ABSTRACT

A single mouse blastomere from an embryo until the 8-cell stage can generate an entire blastocyst. Whether laboratory-cultured cells retain a similar generative capacity remains unknown. Starting from a single stem cell type, extended pluripotent stem (EPS) cells, we established a 3D differentiation system that enabled the generation of blastocyst-like structures (EPS-blastoids) through lineage segregation and self-organization. EPS-blastoids resembled blastocysts in morphology and cell-lineage allocation and recapitulated key morphogenetic events during preimplantation and early postimplantation development in vitro. Upon transfer, some EPS-blastoids underwent implantation, induced decidualization, and generated live, albeit disorganized, tissues in utero. Single-cell and bulk RNA-sequencing analysis revealed that EPS-blastoids contained all three blastocyst cell lineages and shared transcriptional similarity with natural blastocysts. We also provide proof of concept that EPS-blastoids can be generated from adult cells via cellular reprogramming. EPS-blastoids provide a unique platform for studying early embryogenesis and pave the way to creating viable synthetic embryos by using cultured cells.


Subject(s)
Blastocyst/cytology , Cell Lineage , Embryo Implantation , Induced Pluripotent Stem Cells/cytology , Mouse Embryonic Stem Cells/cytology , Research Embryo Creation/methods , Animals , Blastocyst/metabolism , Cell Differentiation , Cell Line , Cells, Cultured , Cellular Reprogramming Techniques/methods , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mouse Embryonic Stem Cells/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...