Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Immunol ; 13: 856463, 2022.
Article in English | MEDLINE | ID: mdl-35572586

ABSTRACT

A viable therapy is needed to overcome the deadlock of the incurable chronic hepatitis B (CHB). The prolonged existence of covalently closed circular DNA (cccDNA) and integrated HBV DNA in the nucleus of hepatocytes is the root cause of CHB. As a result, it is critical to successfully suppress HBV DNA replication and eliminate cccDNA. RNA interference has been proven in recent research to silence the expression of target genes and thereby decrease HBV replication. However, siRNA is susceptible to be degraded by RNA enzymes in vivo, making it difficult to deliver successfully and lacking of tissue targeting. To exploit the advantages of siRNA technology while also overcoming its limitations, we designed a new strategy and prepared biomimetic nanoparticles that were directed by PreS/2-21 peptides and precisely loaded HBV siRNA. Experiments on these nanoparticles in vitro and in vivo revealed that they are tiny, stable, safe and highly targetable, with high inhibitory effects on HBV DNA, pgRNA, cccDNA, HBeAg and HBsAg. PreS/2-21-directed nanoparticles loaded with HBV gene therapy drugs are expected to be promising for the treatment of CHB.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Nanoparticles , DNA, Circular/genetics , DNA, Viral/genetics , Hepatitis B/therapy , Hepatitis B virus/genetics , Humans , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Virus Replication/genetics
2.
Viruses ; 11(9)2019 09 18.
Article in English | MEDLINE | ID: mdl-31540474

ABSTRACT

CXC chemokine receptor 4 (CXCR4) is a co-receptor for HIV-1 entry into target cells. Its natural ligand, the chemokine SDF-1, inhibits viral entry mediated by this receptor. However, the broad expression pattern of CXCR4 and its critical roles in various physiological and pathological processes indicate that the direct application of SDF-1 as an entry inhibitor might have severe consequences. Previously, we constructed an effective SDF-1 mutant, SDF-1/54, by deleting the α-helix of the C-terminal functional region of SDF-1. Of note, SDF-1/54 shows remarkable decreased chemotoxic ability, but maintains a similar binding affinity to CXCR4, suggesting SDF-1/54 might better serve as a CXCR4 inhibitor. Here, we found that SDF-1/54 exhibited potent antiviral activity against various X4 HIV-1 strains, including the infectious clone HIV-1 NL4-3, laboratory-adapted strain HIV-1 IIIB, clinical isolates and even drug-resistant strains. By using time-of-addition assay, non-infectious and infectious cell-cell fusion assay and CXCR4 internalization assay, we demonstrated SDF-1/54 is an HIV-1 entry inhibitor. A combination of SDF-1/54 with several antiretroviral drugs exhibited potent synergistic anti-HIV-1 activity. Moreover, SDF-1/54 was stable and its anti-HIV-1 activity was not significantly affected by the presence of seminal fluid, vaginal fluid simulant and human serum albumin. SDF-1/54 showed limited in vitro cytotoxicity to lymphocytes and vaginal epithelial cells. Based on these findings, SDF-1/54 could have a therapeutic potential as an HIV-1 entry inhibitor.


Subject(s)
Chemokine CXCL12/pharmacology , HIV-1/drug effects , HIV-1/physiology , Receptors, CXCR4/antagonists & inhibitors , Virus Internalization/drug effects , Cell Line , Chemokine CXCL12/genetics , HEK293 Cells , HIV Infections/virology , HeLa Cells , Humans , Inhibitory Concentration 50 , Receptors, CXCR4/genetics , Signal Transduction/drug effects , Virus Replication/drug effects
3.
Bioorg Chem ; 92: 103260, 2019 11.
Article in English | MEDLINE | ID: mdl-31525523

ABSTRACT

As restricted CA-4 analogues, a novel series of [1,2,4]triazolo[1,5-a]pyrimidines possessing 3,4,5-trimethoxylphenyl groups has been achieved successfully via an efficient one-pot three-component reaction of 3-(3,4,5-trimethoxyphenyl)-1H-1,2,4-triazol-5-amine, 1,3-dicarbonyl compounds and aldehydes. Initial biological evaluation demonstrated some of target compounds displayed potent antitumor activity in vitro against three cancer cell lines. Among them, the most highly active analogue 26 inhibited the growth of HeLa, and A549 cell lines with IC50 values at 0.75, and 1.02 µM, respectively, indicating excellent selectivity over non-tumoural cell line HEK-293 (IC50 = 29.94 µM) which suggested that the target compounds might possess a high safety index. Moreover, cell cycle analysis illustrated that the analogue 26 significantly induced HeLa cells arrest in G2/M phase, meanwhile the compound could dramatically affect cell morphology and microtubule networks. In addition, compound 28 exhibited potent anti-tubulin activity with IC50 values of 9.90 µM, and molecular docking studies revealed the analogue occupied the colchicine-binding site of tubulin. These observations suggest that [1,2,4]triazolo[1,5-a]pyrimidines represent a new class of tubulin polymerization inhibitors and well worth further investigation aiming to generate potential anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Pyrimidines/pharmacology , Triazoles/pharmacology , Tubulin Modulators/pharmacology , Tubulin/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HEK293 Cells , Humans , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL