Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 212(7): 1232-1243, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38391297

ABSTRACT

Pharmacological inhibition of IDO1 exhibits great promise as a strategy in cancer therapy. However, the failure of phase III clinical trials has raised the pressing need to understand the underlying reasons for this outcome. To gain comprehensive insights into the reasons behind the clinical failure of IDO1 inhibitors, it is essential to investigate the entire tumor microenvironment rather than focusing solely on individual cells or relying on knockout techniques. In this study, we conducted single-cell RNA sequencing to determine the overall response to apo-IDO1 inhibitor administration. Interestingly, although apo-IDO1 inhibitors were found to significantly activate intratumoral immune cells (mouse colon cancer cell CT26 transplanted in BALB/C mice), such as T cells, macrophages, and NK cells, they also stimulated the infiltration of M2 macrophages. Moreover, these inhibitors prompted monocytes and macrophages to secrete elevated levels of IL-6, which in turn activated the JAK2/STAT3 signaling pathway in tumor cells. Consequently, this activation enables tumor cells to survive even in the face of heightened immune activity. These findings underscore the unforeseen adverse effects of apo-IDO1 inhibitors on tumor cells and highlight the potential of combining IL-6/JAK2/STAT3 inhibitors with apo-IDO1 inhibitors to improve their clinical efficacy.


Subject(s)
Enzyme Inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase , Interleukin-6 , Neoplasms , Animals , Mice , Enzyme Inhibitors/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Mice, Inbred BALB C , Neoplasms/drug therapy , T-Lymphocytes/metabolism , Tumor Microenvironment
3.
Int Immunopharmacol ; 112: 109233, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36126409

ABSTRACT

Colorectal cancer (CRC) is the third most common cancer in the world. Recently, many clinical studies have demonstrated the therapeutic potential of immune checkpoint therapy combined with inhibitors of vascular endothelial growth factor receptor 2 (VEGFR2) in colon cancer. Compound B37, identified in our previous experiment, is an apo-form indoleamine-2,3-dioxygenase 1 inhibitor (apo-IDO1 inhibitor), which has been shown to significantly suppress tumor growth combined with an anti-PD1 antibody. We speculated whether this apo-IDO inhibitor (B37) combined with a VEGFR2 inhibitor (apatinib) would further improve its anti-tumor activity. Therefore, a syngeneic mouse colon cancer model (mouse colon cancer cell line CT26) was established to investigate the anti-tumor activity of B37 combined with apatinib. As expected, the combination of B37 and apatinib (VEGFR2 inhibitor) improved the therapeutic effect compared with apo-IDO1 inhibitor and apatinib monotherapy, as shown by the reduced growth of transplanted tumors, weakened proliferation, and increased apoptosis of cancer cells. Specifically, there was a 24.8% reduction in tumor volume using apatinib and 31.3% reduction using B37. The combination-treated group showed remarkable inhibition of tumor growth (52.2%). For tumor weight, there was a 29.2% reduction in the apatinib-treated group and 35.0% reduction in the B37-treated group. The combination-treated group showed a 56.3% reduction. Moreover, the combination therapy reprogrammed the immune microenvironment by increasing infiltration of CD4+ and CD8+ T cells, decreasing the ratio of regulatory T cells, and promoting the killing ability of T cells manifested by elevated expression of IFN-γ and granzyme B in the combination-treated group. Our study indicates that the combination of apo-IDO1 inhibitor and apatinib is a promising strategy for CRC therapy.


Subject(s)
Colonic Neoplasms , Vascular Endothelial Growth Factor Receptor-2 , Mice , Animals , Vascular Endothelial Growth Factor Receptor-2/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Granzymes , CD8-Positive T-Lymphocytes/metabolism , Vascular Endothelial Growth Factor A , Cell Line, Tumor , Tumor Microenvironment
4.
J Immunol ; 209(1): 180-191, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35725271

ABSTRACT

The pharmacological inhibition of IDO1 is considered an effective therapeutic approach for cancer treatment. However, the inadequate response of existing holo-IDO1 inhibitors and unclear biomarkers available in clinical practice limit the possibility of developing efficacious IDO1 inhibitors. In the current study, we aimed to elucidate the activity and mechanism of a potent 1H-pyrrole-2-carboxylic acid derivative (B37) targeting apo-IDO1 and to determine its role in tumor therapy. By competing with heme for binding to apo-IDO1, B37 potently inhibited IDO1 activity, with an IC50 of 22 pM assessed using a HeLa cell-based assay. The x-ray cocrystal structure of the inhibitor-enzyme complex showed that the B37-human IDO1 complex has strong hydrophobic interactions, which enhances its binding affinity, determined using isothermal titration calorimetry. Stronger noncovalent interactions, including π stacking and hydrogen bonds formed between B37 and apo-human IDO1, underlay the enthalpy-driven force for B37 for binding to the enzyme. These binding properties endowed B37 with potent antitumor efficacy, which was confirmed in a mouse colon cancer CT26 syngeneic model in BALB/c mice and in an azoxymethane/dextran sulfate sodium-induced colon carcinogenesis model in C57BL/6 mice by activating the host immune system. Moreover, the combination of B37 and anti-PD1 Ab synergistically inhibited tumor growth. These results suggested that B37 may serve as a unique candidate for apo-IDO1 inhibition-mediated tumor immunotherapy.


Subject(s)
Immunotherapy , Indoleamine-Pyrrole 2,3,-Dioxygenase , Animals , Enzyme Inhibitors/pharmacology , HeLa Cells , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
5.
Inorg Chem ; 58(18): 11988-11992, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31478371

ABSTRACT

A new one-step synthetic protocol of tris-functionalized Anderson polyoxomolybdates directly from heptamolybdate salts was presented in this Communication. Through this new method, we obtained the first example of Anderson-type polyoxomolybdates with vanadium as the heteroatom. Moreover, the crystals of the products exhibited interesting nanocage or framework extended structures, which were greatly affected by the trialkoxyl ligands as well as the counterions.

SELECTION OF CITATIONS
SEARCH DETAIL
...