Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Clean Prod ; 387: 135854, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36619699

ABSTRACT

Widespread concerns have been raised about the huge environmental burden caused by massive consumption of face masks in the context of the COVID-19 pandemic. However, most of the existing studies only focus on the environmental impact associated with the product itself regardless of the actual usage scenarios and protective performance of products, resulting in unrealistic conclusions and poor applicability. In this context, this study integrated the product performance into the existing carbon footprint assessment methodology, with focus on the current global concerns regarding climate change. Computational case studies were conducted for different mask products applicable to the scenarios of low-, medium- and high-risk levels. The results showed that reusable cotton masks and disposable medical masks suitable for low-risk settings have a total carbon footprint of 285.484 kgCO2-eq/FU and 128.926 kgCO2-eq/FU respectively, with a break-even point of environmental performance between them of 16.886, which implies that cotton masks will reverse the trend and become more environmentally friendly after 17 washes, emphasizing the importance of improving the washability of cotton masks. Additionally, the total carbon footprints of disposable surgical masks and KN95 respirators were 154.328 kg CO2-eq/FU and 641.249 kg CO2-eq/FU respectively, while disposable medical masks and disposable surgical masks were identified as alternatives with better environmental performance in terms of medium- and high-risk environments respectively. The whole-life-cycle oriented carbon footprint evaluation further indicated that the four masks have greater potential for carbon emission reduction in the raw material processing and production processes. The results obtained in this study can provide scientific guidance for manufacturers and consumers on the production and use of protective masks. Moreover, the proposed model can be applied to other personal protective equipment with similar properties, such as protective clothing, in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...