Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Clin Exp Pathol ; 16(3): 48-56, 2023.
Article in English | MEDLINE | ID: mdl-37033395

ABSTRACT

OBJECTIVE: Cervical cancer is one of the leading fatal diseases in women, and the role of Apolipoprotein B mRNA editing enzyme catalytic subunit 3B (APOBEC3B) in cervical cancer is uncertain. METHODS: Four Gene Expression Omnibus (GEO) mRNA microarray datasets were analyzed to identify differentially expressed genes (DEGs) between cervical cancer and normal cervical tissues. The results were validated using a The Cancer Genome Atlas (TCGA)-cervical cancer (CESC) dataset. Expression profiles and patients' clinical data were used to investigate the relationship between APOBEC3B expression and cervical cancer survival. APOBEC3B co-expressed genes were subjected to enrichment analyses, and correlations between APOBEC3B expression and immunologic infiltrates were investigated using Tumor Immune Estimation Resource (TIMER). We generated receiver operating characteristic curve (ROC) curves to evaluate the performance of APOBEC3B expression in predicting cervical cancer prognosis. RESULTS: Fourteen overlapping DEGs were obtained, and APOBEC3B was chosen as a candidate gene. TCGA data further confirmed that APOBEC3B was significantly increased in cervical cancer, relative to normal adjacent tissues, and this expression was associated with poor clinical outcome. Results from quantitative real time polymerase chain reaction (RT-qPCR) and immunohistochemical staining of cervical carcinoma tissues supported these findings. Enrichment analysis showed that APOBEC3B co-expressed genes were mainly enriched in cell cycle, DNA replication and chromosomal region. Moreover, APOBEC3B expression was significantly associated with T stage, M stage, primary therapy outcome and poor clinical prognosis in cervical cancer. Similarly, APOBEC3B was closely correlated with gene markers of diverse immune cells. APOBEC3B expression was an independent indicator of cervical cancer prognosis, according to univariate Cox and ROC analyses. CONCLUSION: High APOBEC3B expression is strongly related to a poor prognosis in cervical cancer patients.

2.
World J Gastroenterol ; 25(10): 1210-1223, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30886504

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high mortality-to-incidence ratios. Nuclear factor erythroid 2-like 3 (NFE2L3), also known as NRF3, is a member of the cap 'n' collar basic-region leucine zipper family of transcription factors. NFE2L3 is involved in the regulation of various biological processes, whereas its role in HCC has not been elucidated. AIM: To explore the expression and biological function of NFE2L3 in HCC. METHODS: We analyzed the expression of NFE2L3 in HCC tissues and its correlation with clinicopathological parameters based on The Cancer Genome Atlas (TCGA) data portal. Short hairpin RNA (shRNA) interference technology was utilized to knock down NFE2L3 in vitro. Cell apoptosis, clone formation, proliferation, migration, and invasion assays were used to identify the biological effects of NFE2L3 in BEL-7404 and SMMC-7721 cells. The expression of epithelial-mesenchymal transition (EMT) markers was examined by Western blot analysis. RESULTS: TCGA analysis showed that NFE2L3 expression was significantly positively correlated with tumor grade, T stage, and pathologic stage. The qPCR and Western blot results showed that both the mRNA and protein levels of NFE2L3 were significantly decreased after shRNA-mediated knockdown in BEL-7404 and SMMC-7721 cells. The shRNA-mediated knockdown of NFE2L3 could induce apoptosis and inhibit the clone formation and cell proliferation of SMMC-7721 and BEL-7404 cells. NFE2L3 knockdown also significantly suppressed the migration, invasion, and EMT of the two cell lines. CONCLUSION: Our study showed that shRNA-mediated knockdown of NFE2L3 exhibited tumor-suppressing effects in HCC cells.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Carcinoma, Hepatocellular/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , Apoptosis/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Datasets as Topic , Epithelial-Mesenchymal Transition/genetics , Gene Knockdown Techniques , Humans , Liver/pathology , Liver Neoplasms/pathology , Neoplasm Invasiveness/genetics , RNA, Small Interfering/metabolism
3.
Lipids Health Dis ; 17(1): 200, 2018 Aug 25.
Article in English | MEDLINE | ID: mdl-30144814

ABSTRACT

BACKGROUND: Scavenger receptor BI (SR-BI) is a classic high-density lipoprotein (HDL) receptor, which mediates selective lipid uptake from HDL cholesterol esters (HDL-C). Apolipoprotein M (ApoM), as a component of HDL particles, could influence preß-HDL formation and cholesterol efflux. The aim of this study was to determine whether SR-BI deficiency influenced the expression of ApoM. METHODS: Blood samples and liver tissues were collected from SR-BI gene knockout mice, and serum lipid parameters, including total cholesterol (TC), triglyceride (TG), high and low-density lipoprotein cholesterol (HDL-C and LDL-C) and ApoM were measured. Hepatic ApoM and ApoAI mRNA levels were also determined. In addition, BLT-1, an inhibitor of SR-BI, was added to HepG2 cells cultured with cholesterol and HDL, under serum or serum-free conditions. The mRNA and protein expression levels of ApoM were detected by RT-PCR and western blot. RESULTS: We found that increased serum ApoM protein levels corresponded with high hepatic ApoM mRNA levels in both male and female SR-BI-/- mice. Besides, serum TC and HDL-C were also significantly increased. Treatment of HepG2 hepatoma cells with SR-BI specific inhibitor, BLT-1, could up-regulate ApoM expression in serum-containing medium but not in serum-free medium, even in the presence of HDL-C and cholesterol. CONCLUSIONS: Results suggested that SR-BI deficiency promoted ApoM expression, but the increased ApoM might be independent from HDL-mediated cholesterol uptake in hepatocytes.


Subject(s)
Apolipoproteins M/metabolism , Cholesterol, HDL/metabolism , Hepatocytes/metabolism , Scavenger Receptors, Class B/metabolism , Animals , Apolipoproteins M/blood , Apolipoproteins M/genetics , Cholesterol, HDL/blood , Cyclopentanes/pharmacology , Female , Genotype , Hep G2 Cells , Hepatocytes/drug effects , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , RNA, Messenger/genetics , RNA, Messenger/metabolism , Thiosemicarbazones/pharmacology
4.
Inflammation ; 41(2): 643-653, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29260347

ABSTRACT

It had been demonstrated that apolipoprotein M (apoM) is an important carrier of sphingosine-1-phosphate (S1P) in blood, and the S1P has critical roles in the pathogenesis of sepsis-induced acute lung injury (ALI). In the present study, we investigated whether apoM has beneficial effects in a mouse model after lipopolysaccharide (LPS)-induced ALI. Forty-eight mice were divided into two groups: male C57BL/6 wild-type (apoM+/+) group (n = 24) and apoM gene-deficient (apoM-/-) group (n = 24) and then randomly subdivided into four subgroups (n = 6 each) according to different intraperitoneal (i.p.) injection: control group, W146 group, LPS group, and LPS + W146 group. Serum levels of interleukin-1 beta (IL-1ß) and mRNA levels of IL-1ß, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), lung histology, wet/dry weight ratio, and immunohistochemistry were measured at 3 h after the baseline and compared in each group. Our results clearly demonstrated that IL-1ß mRNA levels and other inflammatory biomarkers were significantly increased in the lungs of LPS-induced ALI apoM-/- mice compared to those of the apoM+/+ mice. Moreover, when apoM+/+ mice were treated with W146, a S1P receptor (S1PR1) antagonist, these inflammatory biomarkers could be significantly upregulated by LPS-induced ALI. Therefore, it suggests that apoM-S1P-S1PR1 signaling might underlie the pathogenesis of ALI and apoM could have physiological benefits to alleviate LPS-induced ALI.


Subject(s)
Acute Lung Injury/prevention & control , Apolipoproteins M/physiology , Lysophospholipids/metabolism , Sphingosine/analogs & derivatives , Acute Lung Injury/chemically induced , Anilides/pharmacology , Animals , Biomarkers/analysis , Inflammation , Lipopolysaccharides , Male , Mice , Organophosphonates/pharmacology , Protective Agents/pharmacology , Receptors, Lysosphingolipid/antagonists & inhibitors , Receptors, Lysosphingolipid/metabolism , Signal Transduction , Sphingosine/metabolism
5.
Mol Med Rep ; 16(2): 1167-1172, 2017 Aug.
Article in English | MEDLINE | ID: mdl-29067439

ABSTRACT

Apolipoprotein M (ApoM) and the vitamin D receptor (VDR) are apolipoproteins predominantly presenting in high-density lipoprotein (HDL) and a karyophilic protein belonging to the steroid­thyroid receptor superfamily, respectively. Previous studies have demonstrated that ApoM and VDR are associated with cholesterol metabolism, immune and colorectal cancer regulation. In order to investigate whether ApoM affected the expression of VDR in colorectal cancer cells, a single­tube duplex fluorescence reverse transcription­quantitative polymerase chain reaction (RT­qPCR) system was developed to simultaneously detect the mRNA levels of VDR and GAPDH in HT­29 cells overexpressing ApoM. The results demonstrated that the amplification products were confirmed as the specific fragment of VDR/GAPDH using the DNA sequencing instrument. The sensitivity, linear range, correlation coefficient, amplification efficiency, intra­assay and inter­assay coefficients of variation were 40 copies/µl, 4.00x101­4.00x105 copies/µl, 0.999, 92.42%, 0.09­0.34% and 0.32­0.65% for VDR, and 40 copies/µl, 4.00x101­4.00x105 copies/µl, 0.999, 98.07%, 0.19­0.43% and 0.40­0.75% for GAPDH, respectively. The results indicated that the expression of VDR mRNA was significantly higher in HT­29 cells overexpressing ApoM, compared with the negative control group (P<0.05). In conclusion, the current study successfully developed the single­tube duplex RT­qPCR to simultaneously detect VDR and GAPDH expression in colorectal cancer cells. The methodology results demonstrated that the duplex RT­qPCR system with high sensitivity and specificity could ensure the objectivity and credibility of the detection. The present study confirmed that ApoM significantly increased the expression of VDR in HT­29 cells. In addition, it was hypothesized that ApoM may be involved in antineoplastic activity via the upregulation of VDR expression, which may provide novel directions for the investigation of ApoM in cancer.


Subject(s)
Apolipoproteins M/metabolism , RNA, Messenger/metabolism , Receptors, Calcitriol/genetics , Apolipoproteins M/genetics , Base Sequence , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , HT29 Cells , Humans , Plasmids/genetics , Plasmids/metabolism , Receptors, Calcitriol/chemistry , Receptors, Calcitriol/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Up-Regulation
6.
Lipids Health Dis ; 16(1): 66, 2017 Mar 31.
Article in English | MEDLINE | ID: mdl-28359281

ABSTRACT

BACKGROUND: We have previously demonstrated that estrogen could significantly enhance expression of apolipoprotein M (apoM), whereas the molecular basis of its mechanism is not fully elucidated yet. To further investigate the mechanism behind the estrogen induced up-regulation of apoM expression. RESULTS: Our results demonstrated either free 17ß-estradiol (E2) or membrane-impermeable bovine serum albumin-conjugated E2 (E2-BSA) could modulate human apoM gene expression via the estrogen receptor alpha (ER-α) pathway in the HepG2 cells. Moreover, experiments with the luciferase activity analysis of truncated apoM promoters could demonstrate that a regulatory region (from-1580 to -1575 bp (-GGTCA-)) upstream of the transcriptional start site of apoM gene was essential for the basal transcriptional activity that regulated by the ER-α. With the applications of an electrophoresis mobility shift assay and a chromatin immunoprecipitation assay, we could successfully identify a specific ER-α binding element in the apoM promoter region. CONCULSION: In summary, the present study indicates that 17ß-estradiol induced up-regulation of apoM in HepG2 cells is through an ER-α-dependent pathway involving ER-α binding element in the promoter of the apoM gene.


Subject(s)
Apolipoproteins/genetics , Estradiol/physiology , Estrogen Receptor alpha/physiology , Lipocalins/genetics , Transcriptional Activation , Apolipoproteins/metabolism , Apolipoproteins M , Base Sequence , Binding Sites , Hep G2 Cells , Humans , Lipocalins/metabolism , MCF-7 Cells , Promoter Regions, Genetic , Protein Binding , Sequence Analysis, DNA , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL