Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(21): eadn4441, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781334

ABSTRACT

Traditional cathode chemistry of Li-ion batteries relies on the transport of Li-ions within the solid structures, with the transition metal ions and anions acting as the static components. Here, we demonstrate that a solid solution of F- and PO43- facilitates the reversible conversion of a fine mixture of iron powder, LiF, and Li3PO4 into iron salts. Notably, in its fully lithiated state, we use commercial iron metal powder in this cathode, departing from electrodes that begin with iron salts, such as FeF3. Our results show that Fe-cations and anions of F- and PO43- act as charge carriers in addition to Li-ions during the conversion from iron metal to a solid solution of iron salts. This composite electrode delivers a reversible capacity of up to 368 mAh/g and a specific energy of 940 Wh/kg. Our study underscores the potential of amorphous composites comprising lithium salts as high-energy battery electrodes.

2.
Plants (Basel) ; 13(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38592801

ABSTRACT

Mulching practices have been used to improve peach growth and production across the globe. However, the impact of mulching on the physiochemical properties and soil characteristics of orchards remains largely unknown. This study aimed to decipher the impacts of various mulching patterns on the soil environment and the quality of Prunus persica fruit in "Zijinhuangcui". Three treatments were set up, which included black ground fabric mulch (BF) and two living grass mulch treatments (HV: hairy vetch and RG: ryegrass). The results showed that different mulching treatments have different effects on soil, plant growth, and fruit quality. Living grass mulch treatments, especially the HV treatment, significantly improved soil nutrients by enhancing nitrogen-related indicators. Of note, the BF treatment had higher total phosphorus and available phosphorus contents than the HV and RG treatments. The HV treatment had the highest relative abundance of Proteobacteria (33.49%), which is associated with symbiotic nitrogen fixation, followed by RG (25.62%), and BF (22.38%) at the young fruit stage. Similarly, the abundance of Terrimonas, which has a unique nitrogen fixation system at the genus level, was significantly higher in the living grass mulch (HV, 1.30-3.13% and RG, 2.27-4.24%) than in the BF treatment. Living grass mulch also promoted tree growth, increased fruit sugar content, sugar-related components, and sugar-acid ratio, and reduced the acid content. Collectively, the findings of this study show that living grass mulch can promote tree growth and improve fruit quality by improving soil fertility, bacterial diversity, and richness.

3.
BMC Plant Biol ; 23(1): 663, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129812

ABSTRACT

BACKGROUND: Plant HSP20s are not only synthesized in response to heat stress but are also involved in plant biotic and abiotic stress resistance, normal metabolism, development, differentiation, survival, ripening, and death. Thus, HSP20 family genes play very important and diverse roles in plants. To our knowledge, HSP20 family genes in peach have not yet been characterized in detail, and little is known about their possible function in the development of red flesh in peach. RESULTS: In total, 44 PpHSP20 members were identified in the peach genome in this study. Forty-four PpHSP20s were classified into 10 subfamilies, CI, CII, CIII, CV, CVI, CVII, MII, CP, ER, and Po, containing 18, 2, 2, 10, 5, 1, 1, 2, 1, and 2 proteins, respectively. Among the 44 PpHSP20 genes, 6, 4, 4, 3, 7, 11, 5, and 4 PpHSP20 genes were located on chromosomes 1 to 8, respectively. In particular, approximately 15 PpHSP20 genes were located at both termini or one terminus of each chromosome. A total of 15 tandem PpHSP20 genes were found in the peach genome, which belonged to five tandemly duplicated groups. Overall, among the three cultivars, the number of PpHSP20 genes with higher expression levels in red flesh was greater than that in yellow or white flesh. The expression profiling for most of the PpHSP20 genes in the red-fleshed 'BJ' was higher overall at the S3 stage than at the S2, S4-1, and S4-2 stages, with the S3 stage being a very important period of transformation from a white color to the gradual anthocyanin accumulation in the flesh of this cultivar. The subcellular localizations of 16 out of 19 selected PpHSP20 proteins were in accordance with the corresponding subfamily classification and naming. Additionally, to our knowledge, Prupe.3G034800.1 is the first HSP20 found in plants that has the dual targets of both the endoplasmic reticulum and nucleus. CONCLUSIONS: This study provides a comprehensive understanding of PpHSP20s, lays a foundation for future analyses of the unknown function of PpHSP20 family genes in red-fleshed peach fruit and advances our understanding of plant HSP20 genes.


Subject(s)
Prunus persica , Genome, Plant , Genes, Plant/genetics , Heat-Shock Response , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Fruit/genetics , Phylogeny
4.
Foods ; 12(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38137247

ABSTRACT

The flavour and mouthfeel of peaches are crucial qualities of peach germplasm resources that significantly influence consumer preferences. In this study, we utilized 212 peach germplasm resources from the Nanjing Peach Resource Repository, National Fruit Germplasm facility, Jiangsu Academy of Agricultural Sciences as materials for sensory analysis, electronic nose analysis, and composition analysis via high-performance liquid chromatography (HPLC). In the sensory analysis, we divided 212 peach germplasms into three clusters based on hierarchical cluster analysis (d = 5). No.27, No.151, and No.46 emerged as the most representative of these clusters. The electronic nose was used to conduct an evaluation of the aroma profiles of the 212 peach germplasms, revealing that the primary distinguishing factors of peach aroma can be attributed to three sensors: W1S (methane), W1W (terpenes and organosulfur compounds), and W5S (hydrocarbons and aromatic compounds). The primary differences in the aromatic substances were characterized by sensors W2W (aromatic compounds, sulphur, and chlorine compounds) and W1C (aromatic benzene). The HPLC analysis indicated that the persistence of peach sensory characteristics was positively correlated with acids and sourness and negatively correlated with sweetness and the ratio of sugar to acids. The overall impression of the 212 peach germplasms revealed a negative correlation with acids, while a positive correlation was observed between the overall impression and the ratio of sugar to acids. Therefore, this study substantially contributes to the preliminary screening of the analysed specific characteristics of peach germplasms such as No.27, No.46, No.151, and No.211. These selections may provide valuable information for the potential creation of superior germplasm resources.

5.
Chem Sci ; 14(44): 12645-12652, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38020363

ABSTRACT

A unique prospect of using halides as charge carriers is the possibility of the halides undergoing anodic redox behaviors when serving as charge carriers for the charge-neutrality compensation of electrodes. However, the anodic conversion of halides to neutral halogen species has often been irreversible at room temperature due to the emergence of diatomic halogen gaseous products. Here, we report that chloride ions can be reversibly converted to near-neutral atomic chlorine species in the Mn3O4 electrode at room temperature in a highly concentrated chloride-based aqueous electrolyte. Notably, the Zn2+ cations inserted in the first discharge and trapped in the Mn3O4 structure create an environment to stabilize the converted chlorine atoms within the structure. Characterization results suggest that the Cl/Cl- redox is responsible for the observed large capacity, as the oxidation state of Mn barely changes upon charging. Computation results corroborate that the converted chlorine species exist as polychloride monoanions, e.g., [Cl3]- and [Cl5]-, inside the Zn2+-trapped Mn3O4, and the presence of polychloride species is confirmed experimentally. Our results point to the halogen plating inside electrode lattices as a new charge-storage mechanism.

6.
Ying Yong Sheng Tai Xue Bao ; 34(6): 1583-1591, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37694421

ABSTRACT

To screen out suitable herbicides for peach nurseries, we treated the potted seedlings of the peach rootstock 'Nemaguard' with eleven herbicides under recommended doses to investigate the changes of physiological indices and comprehensively evaluate the safety of different herbicides using principal component analysis (PCA). The results showed that soil application of quizalofop-p exhibited no detectable phytotoxicity on rootstock seedlings, while the remaining herbicides generated multiple symptoms, including green loss, wilting, spot, and withering. Starane caused rapid wilting and death, with a 100.0% phytotoxicity index (PI). Soil application of n-(phosphonomethyl)glycine, glufosinate-ammonium, acetochlor, and MCPA-Na showed a PI>65.0%. As compared with the control, all herbicides inhibited leaf area growth to varying degrees, with a 10.0%-56.2% and 5.8%-44.4% reduction in young leaf area and mature leaf area, respectively. All herbicides, except quizalofop-p, increased the electrolyte permeability of leaf and root tip cells by 21.2%-145.0% and 36.9%-291.4%, respectively, and significantly inhibited root growth. The total root length, root surface area, root volume, and the number of root tips significantly decreased by 37.3%-75.3%, 35.7%-83.0%, 44.3%-89.9%, and 42.6%-73.7%, respectively. Although net photosynthetic rate (Pn) and transpiration rate (Tr) of leaves were not significantly affected by quizalofop-p, mesotrione-atrazine, MCPA-Na·bentazone, bensulfuron-methyl·quinclorac, and bensulfuron-methyl·acetochlor, there was significant reduction of 29.6%, 28.9%, 28.4% and 27.9% in Pn and 21.9%, 29.2%, 26.4%, and 19.7% in Tr post soil application of n-(phosphonomethyl)glycine, glufosinate-ammonium, acetochlor, and MCPA-Na. The overall safety ranking of the 11 examined herbicides is as follows: quizalofop-p>bensulfuron-methyl·acetochlor>bensulfuron-methyl·quinclorac>esotrione·atrazine> auizalofop-p·fluoroglycofen>acetochlor>MCPA-Na·bentazone>MCPA-Na>n-(phosphonomethyl)glycine>glufosinate-ammonium>sterane.


Subject(s)
2-Methyl-4-chlorophenoxyacetic Acid , Atrazine , Herbicides , Prunus persica , Herbicides/toxicity , Seedlings
7.
Adv Mater ; 35(47): e2302595, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37604112

ABSTRACT

Li2 MnO3 has been contemplated as a high-capacity cathode candidate for Li-ion batteries; however, it evolves oxygen during battery charging under ambient conditions, which hinders a reversible reaction. However, it is unclear if this irreversible process still holds under subambient conditions. Here, the low-temperature electrochemical properties of Li2 MnO3 in an aqueous LiCl electrolyte are evaluated and a reversible discharge capacity of 302 mAh g-1 at a potential of 1.0 V versus Ag/AgCl at -78 °C with good rate capability and stable cycling performance, in sharp contrast to the findings in a typical Li2 MnO3 cell cycled at room temperature, is observed. However, the results reveal that the capacity does not originate from the reversible oxygen oxidation in Li2 MnO3 but the reversible Cl2 (l)/Cl- (aq.) redox from the electrolyte. The results demonstrate the good catalytic properties of Li2 MnO3 to promote the Cl2 /Cl- redox at low temperatures.

8.
Natl Sci Rev ; 10(6): nwad021, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37181083
9.
Foods ; 12(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37107443

ABSTRACT

Peach (Prunus persica (L.) Batsch) is a highly desirable fruit that is consumed around the world. However, the peach fruit is highly perishable after harvest, a characteristic that limits the distribution and supply to the market and causes heavy economic losses. Thus, peach fruit softening and senescence after harvest urgently need to be addressed. In the current study, transcriptomic analysis was performed to identify candidate genes associated with peach fruit softening and senescence, comparing peach fruit from cultivars with different flesh textures, namely melting and stony hard (SH) flesh textures during storage at room temperature. The mitogen-activated protein kinase signaling pathway-plant and plant hormone signal transduction pathways were associated with peach fruit softening and senescence according to the Venn diagram analysis and weighted gene co-expression network analysis. The expression levels of seven genes, including Prupe.1G034300, Prupe.2G176900, Prupe.3G024700, Prupe.3G098100, Prupe.6G226100, Prupe.7G234800, and Prupe.7G247500, were higher in melting peach fruit than in SH peach fruit during storage. Furthermore, the SH peach fruit softened rapidly after 1-naphthylacetic acid treatment, during which the levels of expression of these seven genes, determined by a quantitative reverse transcription polymerase chain reaction, were strongly induced and upregulated. Thus, these seven genes may play essential roles in regulating peach fruit softening and senescence.

10.
Plant Physiol ; 192(2): 1638-1655, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36943294

ABSTRACT

Auxin can inhibit or promote fruit ripening, depending on the species. Melting flesh (MF) peach fruit (Prunus persica L. Batsch) cultivars produce high levels of ethylene caused by high concentrations of indole-3-acetic acid (IAA), which leads to rapid fruit softening at the late stage of development. In contrast, due to the low concentrations of IAA, the fruit of stony hard (SH) peach cultivars does not soften and produces little ethylene. Auxin seems necessary to trigger the biosynthesis of ethylene in peach fruit; however, the mechanism is not well understood. In this study, we identified miRNA gene family members ppe-miR393a and ppe-miR393b that are differentially expressed in SH and MF fruits. RNA ligase-mediated 5' rapid amplification of cDNA ends and transient transformation of Nicotiana benthamiana revealed TRANSPORT INHIBITOR RESPONSE 1 (PpTIR1), part of the auxin perception and response system, as a target of ppe-miR393a and b. Yeast 2-hybrid assay and bimolecular fluorescence complementation assay revealed that PpTIR1 physically interacts with an Aux/IAA protein PpIAA13. The results of yeast 1-hybrid assay, electrophoretic mobility shift assay, and dual-luciferase assay indicated that PpIAA13 could directly bind to and trans-activate the promoter of 1-aminocyclopropane-1-carboxylic acid synthase 1 (PpACS1), required for ethylene biosynthesis. Transient overexpression and suppression of ppe-miR393a and PpIAA13 in peach fruit induced and repressed the expression of PpACS1, confirming their regulatory role in ethylene synthesis. Gene expression analysis in developing MF and SH fruits, combined with postharvest α-naphthalene acetic acid (NAA) treatment, supports a role for a ppe-miR393-PpTIR1-PpIAA13-PpACS1 module in regulating auxin-related differences in ethylene production and softening extent in different types of peach.


Subject(s)
Prunus persica , Prunus persica/genetics , Prunus persica/metabolism , Fruit , Saccharomyces cerevisiae/metabolism , Ethylenes/metabolism , Indoleacetic Acids/metabolism , Gene Expression Regulation, Plant
11.
Angew Chem Int Ed Engl ; 61(47): e202212191, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36178905

ABSTRACT

Most reported cathodes of nonaqueous dual-ion batteries (DIBs) host anions via insertion reactions. It is necessary to explore new cathode chemistry to increase the battery energy density. To date, transition metals have yet to be investigated for nonaqueous DIBs, albeit they may offer high capacity in anodic conversion reactions. Here, we report that bulk copper powder exhibits a high reversible capacity of 762 mAh g-1 at 3.2 V vs. Li+ /Li and relatively stable cycling in common organic electrolytes. The operation of the copper electrode is coupled with the transfer of anion charge carriers. An anion exchange membrane separator is employed to prevent Cu2+ from crossing from the catholyte to the anode side. We designed an unbalanced electrolyte with a more concentrated anolyte than a catholyte. This addresses the concentration overpotential ensued during charge and facilitates the high specific capacity and enhanced reversibility. This finding provides a promising direction for high-energy DIBs.

12.
BMC Musculoskelet Disord ; 23(1): 868, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36114570

ABSTRACT

BACKGROUND: Hybrid total hip replacement (THR) is commonly used in the management of proximal femur fractures in elderly individuals. However, in the context of the revision, the literature on hybrid THR is limited, and differences in the long-term survival outcomes reported in the literature are obvious. This retrospective study aimed to evaluate the long-term survival of hybrid THR for failed proximal femoral nail antirotation (PFNA) in elderly individuals aged ≥ 75 years. METHODS: An observational cohort of 227 consecutive individuals aged ≥ 75 years who experienced hybrid THRs following prior primary PFNAs was retrospectively identified from the Joint Surgery Centre, the First Affiliated Hospital, Sun Yat-sen University. Implant survival was estimated using the Kaplan-Meier method. The primary end point was the implant survivorship calculated using the Kaplan-Meier method with revision for any reason as the end point; secondary end points were the function score measured using the modified Harris Hip Score (mHHS) and the incidence of main orthopaedic complications. RESULTS: In total, 118 individuals (118 THRs) were assessed as available. The median follow-up was 10 (3-11) years. The 10-year survivorship with revision for any reason as the endpoint was 0.914 (95% confidence interval [CI], 0.843-0.960). The most common indication for revision was aseptic loosening (70.0%), followed by periprosthetic fracture (30.0%). At the final follow-up, the median functional score was 83.6 (79.0-94.0). Among the 118 patients included in this study, 16 experienced 26 implant-related complications. The overall incidence of key orthopaedic complications was 13.5% (16/118). CONCLUSION: For patients aged ≥ 75 years old with prior failed PFNAs, hybrid THR may yield satisfactory long-term survival, with good functional outcomes and a low rate of key orthopaedic complications.


Subject(s)
Arthroplasty, Replacement, Hip , Aged , Arthroplasty, Replacement, Hip/adverse effects , Femur , Follow-Up Studies , Humans , Reoperation , Retrospective Studies
13.
Front Nutr ; 9: 961626, 2022.
Article in English | MEDLINE | ID: mdl-35928835

ABSTRACT

As the most abundant phenolic acid in peach fruit, chlorogenic acid (CGA) is an important entry point for the development of natural dietary supplements and functional foods. However, the metabolic and regulation mechanisms underlying its accumulation in peach fruits remain unclear. In this study, we evaluated the composition and content of CGAs in mature fruits of 205 peach cultivars. In peach fruits, three forms of CGA (52.57%), neochlorogenic acid (NCGA, 47.13%), and cryptochlorogenic acid (CCGA, 0.30%) were identified. During the growth and development of peach fruits, the content of CGAs generally showed a trend of rising first and then decreasing. Notably, the contents of quinic acid, shikimic acid, p-coumaroyl quinic acid, and caffeoyl shikimic acid all showed similar dynamic patterns to that of CGA, which might provide the precursor material basis for the accumulation of CGA in the later stage. Moreover, CGA, lignin, and anthocyanins might have a certain correlation and these compounds work together to maintain a dynamic balance. By the comparative transcriptome analysis, 8 structural genes (Pp4CL, PpCYP98A, and PpHCT) and 15 regulatory genes (PpMYB, PpWRKY, PpERF, PpbHLH, and PpWD40) were initially screened as candidate genes of CGA biosynthesis. Our findings preliminarily analyzed the metabolic and molecular regulation mechanisms of CGA biosynthesis in peach fruit, which provided a theoretical basis for developing high-CGA content peaches in future breeding programs.

14.
Foods ; 11(15)2022 Jul 24.
Article in English | MEDLINE | ID: mdl-35892785

ABSTRACT

To investigate the peach fruit flesh types (soft-melting, hard-melting, stonyhard and non-melting) and harvest maturity level suitable for near-freezing temperature storage (NFTS), eight peach cultivars that had four flesh types were used as test materials. Changes in fruit respiration intensity and ethylene release rates, as well as the differences in quality indexes, such as soluble solids content (SSC), firmness, color difference, pigment content, soluble sugar and organic acid component content, of three fruit maturity levels (70%, 80% and 90% maturity) under NFTS conditions were analyzed and compared. The fruit quality indexes of peach having different maturity levels and flesh types changed little during NFTS. The SSC and total sugar content of hard-melting and stonyhard peach fruit were higher than those of other flesh types during NFTS. Those fruit maintained greater firmness at the end of the storage period. The differences in respiration intensity and ethylene release rate were small, but for fruit coloring, hard-melting fruit performed better than stonyhard fruit. The 80%, compared with the 90%, maturity stage maintained more fruit moisture, had less fruit mass loss and maintained a greater edible firmness. It effectively impeded the fruit senescence process and was the most suitable maturity for NFTS. Thus, the hard-melting peach maintained the highest commercial value and desirable storage characteristics under NFTS conditions, and its 80% maturity level was the most suitable for NFTS.

15.
BMC Musculoskelet Disord ; 23(1): 637, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35787266

ABSTRACT

BACKGROUND: Given the unremitting growth in the volume of failed fixations of proximal femoral fractures (PFFs) in recent years, it is predictable that total hip replacements (THRs) will be the preferred surgical procedure. The long-term survival of cemented THR (CTHR) revisions remains controversial in patients aged 30-60 years. The goal of this retrospective review was to evaluate the 10-year survival of CTHRs following prior failed primary fixations of PFFs in patients aged 30-60 years. METHODS: We retrospectively identified CTHR revisions implemented at four medical centres during 2008-2017 for a failed primary fixation of PFFs in consecutive patients aged 30-60 years. The primary endpoint was implant survival calculated using the Kaplan-Meier method with 95% confidence intervals (CIs); secondary endpoints included functional scores assessed by Harris hip scores (HHS) and main revision-related orthopaedic complications. Follow-up was executed at 1, 2, 3, and 8 years following revision and then at 1-year intervals until the revision, death, or study deadline, whichever occurred first. RESULTS: In total, 120 patients (120 hips) who met the eligibility criteria were eligible for follow-up. The median follow-up was 10.2 years (range, 8-12 years). Kaplan-Meier survivorship showed that implant survival with revision for any reason as the endpoint was 95% at 5 years (CI: 93-97%), 89% at 8 years (CI: 86-92%), and 86% at 10 years (CI: 83-89%). Patients treated with three hollow screws had better revision-free survival than patients treated with proximal femoral nail antirotation (PFNA), dynamic hip screw (DHS) or titanium plate plus screws (three p < 0.05). Functional scores were apt to decrease gradually, and at the final follow-up, the mean HHS was 76.9 (range, 67.4-86.4). The overall rate of main revision-related orthopaedic complications was 18.3% (22/120). CONCLUSION: CTHR implemented following prior failed primary fixations of PFFs tends to afford an acceptable 10-year survival, along with advantageous HHS and a low rate of main revision-related orthopaedic complications, which may support an inclination to follow the utilisation of CTHRs, especially in revision settings for intracapsular fractures.


Subject(s)
Arthroplasty, Replacement, Hip , Femoral Fractures , Arthroplasty, Replacement, Hip/adverse effects , Arthroplasty, Replacement, Hip/methods , Femoral Fractures/etiology , Follow-Up Studies , Humans , Reoperation , Retrospective Studies
16.
Foods ; 11(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35741867

ABSTRACT

In this study, the carotenoid profiles and content in 132 cultivars of yellow-flesh peach having different fruit developmental periods (short, middle, and long), fruit surface indumenta (glabrous and pubescent skin), and flesh colors (yellow, golden, and orange) were investigated. We simultaneously analyzed and compared the levels of five carotenoids (lutein, zeaxanthin, ß-cryptoxanthin, α-carotene, and ß-carotene) through high-performance liquid chromatography. Large differences in carotenoid content among germplasms were observed, with coefficients of variation ranging from 21.24% to 67.78%. The carotenoid content, from high to low, was as follows: ß-carotene > zeaxanthin > α-carotene > ß-cryptoxanthin > lutein. We screened several varieties with high carotenoid content, including zeaxanthin in 'Ruiguang2', ß-cryptoxanthin in 'NJN76' and 'TX4F244C', and ß-carotene and total carotenoids in 'Jintong7', '77-26-7', and '77-20-5'. A longer fruit developmental period was associated with greater ß-carotene accumulation but lowered the zeaxanthin and ß-cryptoxanthin accumulation. The zeaxanthin, ß-carotene, and total carotenoid concentrations significantly increased as the flesh color deepened, but the lutein and α-carotene levels remained similar among the three flesh colors. The classification index of the indumenta significantly affected the ß-carotene and total carotenoid content (p < 0.05) and was higher in pubescent than glabrous skin.

17.
Foods ; 11(12)2022 Jun 12.
Article in English | MEDLINE | ID: mdl-35741916

ABSTRACT

Amino acids play an interesting and important role in the metabolism of peaches. The objectives of this study were to investigate and compare amino acid profiles in peaches at harvest for future research about the resistance effects, nutritional value of amino acids in peaches and to produce high-quality peach wine. In the study, 10 peaches and nectarines, including white, yellow and red flesh varieties, were selected for amino acid concentration and composition by high performance liquid chromatography (HPLC). Results showed sugar levels in nectarines were higher than in peaches in this study. High concentrations of total acids were found in "Tropic Prince", "Yixianhong", "NJN76" and "Hongrou1". Malic acids had the highest concentrations, compared toquinic and citric acid concentrations. Total amino acids in yellow and white flesh varieties were over 1100 µg/g FW, while red flesh varieties had total amino acids below 750 µg/g FW. Asn was the highest concentration compared to other amino acids, with the high concentration of Asn in "Tropical Prince' (3279.15 µg/g FW) and the lowest concentration in "Touxinhong" (559.60 µg/g FW). "Jinxia", "Yuhua3" and "Chengxiang" had better amino acid scores compared with others, in particularly the lowest value in the red flesh varieties. Finally, according to PCA and the heatmaps, amino acids in "Chengxiang"had evident differences to other varieties, which showed the different amino acid concentrations and composition. Overall, the results of this study highlighted three yellow flesh and one white flesh varieties that had satisfactory concentrations and components of amino acid values. In addition, amino acids were the precursors of aroma compounds, so these differences between varieties werea new way to screen the potential varieties for producing high quality peach wines with the anticipated specific characteristics.

18.
J Exp Bot ; 73(5): 1357-1369, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35022695

ABSTRACT

The green peach aphid (GPA), Myzus persicae, is a polyphagous, sap-sucking aphid and a vector of many plant viruses. In peach, Prunus persica, three individual dominant GPA resistance loci have been genetically defined (Rm1-3), but knowledge of the underlying genes is limited. In this study, we focused on the Rm3 locus. Bulk segregant analysis (BSA) mapping in segregating progeny populations delimited Rm3 to an interval spanning 160 kb containing 21 genes on chromosome 1. RNA-seq data provided no evidence of candidate genes, but chromosomal structural variations were predicted around a nucleotide-binding site-leucine-rich repeat (NLR) gene (ppa000596m) within the Rm3 fine-mapping interval. Following bacterial artificial chromosome (BAC) library construction for a GPA-resistant peach cultivar and the sequencing of three target BAC clones, a chromosomal structural variation encompassing two novel TIR-NLR-class disease resistance (R) protein-coding genes was identified, and the expressed NLR gene (NLR1) was identified as a candidate for M. persicae resistance. Consistent with its proposed role in controlling GPA resistance, NLR1 was only expressed in the leaves of resistant peach phenotypes. A molecular marker that was designed based on the NLR1 sequence co-segregated with the GPA-resistant phenotype in four segregating populations, 162 peach cultivars, and 14 wild relatives, demonstrating the dominant inheritance of the Rm3 locus. Our findings can be exploited to facilitate future breeding for GPA-resistance in peach.


Subject(s)
Aphids , Prunus persica/genetics , Animals , Disease Resistance/genetics , Genes, Plant , Insect Vectors , Phenotype , Plant Breeding , Plant Leaves
19.
Foods ; 10(12)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34945506

ABSTRACT

Peach is a putrescible fruit thus drastically restricting its postharvest storage life. In recent years, the application of 1-methylcyclopropene (1-MCP) and nitric oxide (NO) in postharvest fruit quality control has received considerable attention and investigative efforts due to the advantages of using relatively low concentrations and short-time treatment duration. In the present study, the effects of various 1-MCP and NO treatments on peach fruit (Prunus persica L. cv. Xiahui-8) stored at 25 °C were evaluated and compared. Results indicated that the combination treatment with both chemical agents (MN) was most effective in postponing peach ripening and preserving fruit quality, followed by 1-MCP and NO treatment alone. We also demonstrated that NO could delay fruit senescence mainly by stimulating antioxidant enzymes, while 1-MCP overly outperformed NO in the treatment of 'Xiahui-8' peach in slowing down respiration rate, inhibiting ethylene production, maintaining high firmness and reducing ROS content. NO treatment showed a greater influence on phenolic compounds than 1-MCP especially anthocyanins, flavanones and flavones according to LC/MS analysis. The phenolic change in MN group were highly associated to NO treatment. Through this study we provide informative physiological, biochemical and molecular evidence for the beneficial effects of the combined 1-MCP and NO treatment on peach fruit based on a functional synergy between these two chemical agents.

20.
Acta Sci Pol Technol Aliment ; 20(3): 313-323, 2021.
Article in English | MEDLINE | ID: mdl-34304549

ABSTRACT

BACKGROUND: Ethylene response factors (ERFs) perform diverse functions in fruit development, ripening and senescence. However, the effects of postharvest treatments on ERF genes have not been widely investigated due to the lack of peach ERF genomic information. The aim of this study was to investigate the ERF genes' expression of freshly harvested peach during storage after 1-methylcyclopropene (1-MCP) treatment. METHODS: 10 µL L-1 1-MCP was used to fumigate peaches. Treated peaches and control peaches were stored at 20°C for 9 days. Fruit firmness, ethylene production and the transcript abundance of ERFs were evaluated during storage. RESULTS: 127 AP2/ERF genes were identified genome using RNA-sequencing (RNA-seq). Expression profiles of 39 ERF genes were considered at day 0, 3, 5 and 7. Results showed that 1-MCP inhibited some ERF genes' expression (e.g., Prupe.5G117800), some genes were generally up-regulated responding to 1-MCP (e.g., Prupe.6G039700), while the other ERF genes displayed no significant difference between the two groups (e.g., Prupe.1G130300). CONCLUSIONS: These data revealed that peach ERF genes perform diverse functions during fruit growth, ripening and senescence. The different responses of ERF genes to postharvest 1-MCP treatment may be useful to understand the roles of ethylene and ERF genes in controlling technological aspects of postharvest peach conservation.


Subject(s)
Cyclopropanes/pharmacology , Ethylenes/biosynthesis , Food Storage , Fruit/metabolism , Gene Expression Regulation, Plant , Plant Growth Regulators/pharmacology , Plant Proteins/metabolism , Prunus persica/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Fumigation , Gene Expression Profiling , Humans , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Prunus persica/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL