Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Bioinformatics ; 39(2)2023 02 03.
Article in English | MEDLINE | ID: mdl-36692145

ABSTRACT

MOTIVATION: Protein-protein interaction (PPI) networks and transcriptional regulatory networks are critical in regulating cells and their signaling. A thorough understanding of PPIs can provide more insights into cellular physiology at normal and disease states. Although numerous methods have been proposed to predict PPIs, it is still challenging for interaction prediction between unknown proteins. In this study, a novel neural network named AFTGAN was constructed to predict multi-type PPIs. Regarding feature input, ESM-1b embedding containing much biological information for proteins was added as a protein sequence feature besides amino acid co-occurrence similarity and one-hot coding. An ensemble network was also constructed based on a transformer encoder containing an AFT module (performing the weight operation on vital protein sequence feature information) and graph attention network (extracting the relational features of protein pairs) for the part of the network framework. RESULTS: The experimental results showed that the Micro-F1 of the AFTGAN based on three partitioning schemes (BFS, DFS and the random mode) on the SHS27K and SHS148K datasets was 0.685, 0.711 and 0.867, as well as 0.745, 0.819 and 0.920, respectively, all higher than that of other popular methods. In addition, the experimental comparisons confirmed the performance superiority of the proposed model for predicting PPIs of unknown proteins on the STRING dataset. AVAILABILITY AND IMPLEMENTATION: The source code is publicly available at https://github.com/1075793472/AFTGAN. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Neural Networks, Computer , Software , Proteins/chemistry , Amino Acid Sequence , Protein Interaction Maps
2.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: mdl-34472585

ABSTRACT

Clustering and cell type classification are a vital step of analyzing scRNA-seq data to reveal the complexity of the tissue (e.g. the number of cell types and the transcription characteristics of the respective cell type). Recently, deep learning-based single-cell clustering algorithms become popular since they integrate the dimensionality reduction with clustering. But these methods still have unstable clustering effects for the scRNA-seq datasets with high dropouts or noise. In this study, a novel single-cell RNA-seq deep embedding clustering via convolutional autoencoder embedding and soft K-means (scCAEs) is proposed by simultaneously learning the feature representation and clustering. It integrates the deep learning with convolutional autoencoder to characterize scRNA-seq data and proposes a regularized soft K-means algorithm to cluster cell populations in a learned latent space. Next, a novel constraint is introduced to the clustering objective function to iteratively optimize the clustering results, and more importantly, it is theoretically proved that this objective function optimization ensures the convergence. Moreover, it adds the reconstruction loss to the objective function combining the dimensionality reduction with clustering to find a more suitable embedding space for clustering. The proposed method is validated on a variety of datasets, in which the number of clusters in the mentioned datasets ranges from 4 to 46, and the number of cells ranges from 90 to 30 302. The experimental results show that scCAEs is superior to other state-of-the-art methods on the mentioned datasets, and it also keeps the satisfying compatibility and robustness. In addition, for single-cell datasets with the batch effects, scCAEs can ensure the cell separation while removing batch effects.


Subject(s)
Algorithms , Single-Cell Analysis , Cluster Analysis , RNA-Seq , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods
3.
BMC Genomics ; 22(1): 860, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34844559

ABSTRACT

BACKGROUND: With single-cell RNA sequencing (scRNA-seq) methods, gene expression patterns at the single-cell resolution can be revealed. But as impacted by current technical defects, dropout events in scRNA-seq lead to missing data and noise in the gene-cell expression matrix and adversely affect downstream analyses. Accordingly, the true gene expression level should be recovered before the downstream analysis is carried out. RESULTS: In this paper, a novel low-rank tensor completion-based method, termed as scLRTC, is proposed to impute the dropout entries of a given scRNA-seq expression. It initially exploits the similarity of single cells to build a third-order low-rank tensor and employs the tensor decomposition to denoise the data. Subsequently, it reconstructs the cell expression by adopting the low-rank tensor completion algorithm, which can restore the gene-to-gene and cell-to-cell correlations. ScLRTC is compared with other state-of-the-art methods on simulated datasets and real scRNA-seq datasets with different data sizes. Specific to simulated datasets, scLRTC outperforms other methods in imputing the dropouts closest to the original expression values, which is assessed by both the sum of squared error (SSE) and Pearson correlation coefficient (PCC). In terms of real datasets, scLRTC achieves the most accurate cell classification results in spite of the choice of different clustering methods (e.g., SC3 or t-SNE followed by K-means), which is evaluated by using adjusted rand index (ARI) and normalized mutual information (NMI). Lastly, scLRTC is demonstrated to be also effective in cell visualization and in inferring cell lineage trajectories. CONCLUSIONS: a novel low-rank tensor completion-based method scLRTC gave imputation results better than the state-of-the-art tools. Source code of scLRTC can be accessed at https://github.com/jianghuaijie/scLRTC .


Subject(s)
Gene Expression Profiling , Single-Cell Analysis , RNA-Seq , Sequence Analysis, RNA , Software
4.
Int J Mol Sci ; 22(21)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34769509

ABSTRACT

According to proteomics technology, as impacted by the complexity of sampling in the experimental process, several problems remain with the reproducibility of mass spectrometry experiments, and the peptide identification and quantitative results continue to be random. Predicting the detectability exhibited by peptides can optimize the mentioned results to be more accurate, so such a prediction is of high research significance. This study builds a novel method to predict the detectability of peptides by complying with the capsule network (CapsNet) and the convolutional block attention module (CBAM). First, the residue conical coordinate (RCC), the amino acid composition (AAC), the dipeptide composition (DPC), and the sequence embedding code (SEC) are extracted as the peptide chain features. Subsequently, these features are divided into the biological feature and sequence feature, and separately inputted into the neural network of CapsNet. Moreover, the attention module CBAM is added to the network to assign weights to channels and spaces, as an attempt to enhance the feature learning and improve the network training effect. To verify the effectiveness of the proposed method, it is compared with some other popular methods. As revealed from the experimentally achieved results, the proposed method outperforms those methods in most performance assessments.


Subject(s)
Amino Acids/chemistry , Computational Biology/methods , Mass Spectrometry/methods , Peptides/analysis , Proteomics/methods , Algorithms , Databases, Protein , Humans , Neural Networks, Computer , Peptides/chemistry , Proteomics/standards , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL