Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 50(6): 2093-2101, 2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33481974

ABSTRACT

Highly efficient bifunctional oxygen electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are crucially important for the rechargeable Zn-air battery, a potential power source for applications in electric vehicles and grid-scale stationary storage systems. Herein, Co3O4@NiCo2O4 double-shelled nanocages (Co3O4@NiCo2O4 DSNCs) with hierarchical hollow structure and oxygen vacancies were designed and synthesized via annealing metal-organic frameworks. Co3O4@NiCo2O4 DSNCs with large specific surface area and three-dimensional interconnected mesopores and cavity not only provide more reaction sites, but also offer an efficient transport environment for reactants. Moreover, oxygen vacancies on the surfaces improve the capture of oxygen species to enhance the reactivity of the catalyst. Consequently, Co3O4@NiCo2O4 DSNCs displayed excellent bifunctional electrocatalytic performance, with a positive half-wave potential of 0.81 V (vs. reversible hydrogen electrode, RHE) for ORR (approaching the potential of commercial Pt/C catalyst) and a low potential of 1.65 V at 10 mA cm-2 for OER (exceeding Pt/C). In a practical demonstration, the Zn-air battery using Co3O4@NiCo2O4 DSNCs as the cathode delivered a satisfactory power density of 102.1 mW cm-2, comparable to the Zn-air battery with a Pt/C cathode, and exhibited much longer cycling stability.

2.
Small ; 12(4): 524-33, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26641209

ABSTRACT

Metal nanocrystals (NCs) are grown directly on the surface of reduced graphene oxide (rGO), which can maximize the rGO-NCs contact/interaction to achieve the enhanced catalytic activity. However, it is difficult to control the size and morphology of metal NCs by in situ method due to the effects of functional groups on the surface of GO, and as a result, the metal NCs/rGO hybrids are conventionally synthesized by two-step method. Herein, one-pot synthesis of Pt-Co alloy NCs is demonstrated with concave-polyhedrons and concave-nanocubes bounded by {hkl} and {hk0} high-index facets (HIFs) distributed on rGO. GO can affect the geometry and electronic structure of Pt-Co NCs. Thanks to the synergy of the HIFs and the electronic effect of the intimate contact/interaction between Pt-Co alloy and rGO, these as-prepared Pt-Co NCs/rGO hybrids presents enhanced catalytic properties for the electrooxidation of formic acid, as well as for the oxygen reduction reaction.

3.
Angew Chem Int Ed Engl ; 53(46): 12522-7, 2014 Nov 10.
Article in English | MEDLINE | ID: mdl-25195668

ABSTRACT

The shape-controlled synthesis of multicomponent metal nanocrystals (NCs) bounded by high-index facets (HIFs) is of significant importance in the design and synthesis of high-activity catalysts. We report herein the preparation of Pt-Ni alloy NCs by tuning their shape from concave-nanocubic (CNC) to nanocubic and hexoctahedral (HOH). Owing to the synergy of the HIFs and the electronic effect of the Pt-Ni alloy, the as-prepared CNC and HOH Pt-Ni alloy NCs exhibited excellent catalytic properties for the electrooxidation of methanol and formic acid, as well as for the oxygen reduction reaction (ORR).

4.
Angew Chem Int Ed Engl ; 53(20): 5097-101, 2014 May 12.
Article in English | MEDLINE | ID: mdl-24692362

ABSTRACT

Noble metal nanocrystals (NCs) enclosed with high-index facets hold a high catalytic activity thanks to the high density of low-coordinated step atoms that they exposed on their surface. Shape-control synthesis of the metal NCs with high-index facets presents a big challenge owing to the high surface energy of the NCs, and the shape control for metal Rh is even more difficult because of its extraordinarily high surface energy in comparison with Pt, Pd, and Au. The successful synthesis is presented of tetrahexahedral Rh NCs (THH Rh NCs) enclosed by {830} high-index facets through the dynamic oxygen adsorption/desorption mediated by square-wave potential. The results demonstrate that the THH Rh NCs exhibit greatly enhanced catalytic activity over commercial Rh black catalyst for the electrooxidation of ethanol and CO.

5.
J Am Chem Soc ; 132(22): 7580-1, 2010 Jun 09.
Article in English | MEDLINE | ID: mdl-20469858

ABSTRACT

Tetrahexahedral Pd nanocrystals (THH Pd NCs) with {730} high-index facets were directly produced on a glassy carbon substrate in a dilute PdCl(2) solution by a newly developed programmed electrodeposition method. The THH Pd NCs, thanks to their high density of surface atomic steps, exhibit 4-6 times higher catalytic activity than commercial Pd black catalyst toward ethanol electrooxidation in alkaline solutions. This straightforward method provides a promising route to facile preparation of high-index-faceted metal nanocatalysts with high catalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL