Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 11: 1292027, 2023.
Article in English | MEDLINE | ID: mdl-38093816

ABSTRACT

The global cost-benefit analysis of pesticide use during the last 30 years has been characterized by a significant increase during the period from 1990 to 2007 followed by a decline. This observation can be attributed to several factors including, but not limited to, pest resistance, lack of novelty with respect to modes of action or classes of chemistry, and regulatory action. Due to current and projected increases of the global population, it is evident that the demand for food, and consequently, the usage of pesticides to improve yields will increase. Addressing these challenges and needs while promoting new crop protection agents through an increasingly stringent regulatory landscape requires the development and integration of infrastructures for innovative, cost- and time-effective discovery and development of novel and sustainable molecules. Significant advances in artificial intelligence (AI) and cheminformatics over the last two decades have improved the decision-making power of research scientists in the discovery of bioactive molecules. AI- and cheminformatics-driven molecule discovery offers the opportunity of moving experiments from the greenhouse to a virtual environment where thousands to billions of molecules can be investigated at a rapid pace, providing unbiased hypothesis for lead generation, optimization, and effective suggestions for compound synthesis and testing. To date, this is illustrated to a far lesser extent in the publicly available agrochemical research literature compared to drug discovery. In this review, we provide an overview of the crop protection discovery pipeline and how traditional, cheminformatics, and AI technologies can help to address the needs and challenges of agrochemical discovery towards rapidly developing novel and more sustainable products.

2.
PLoS One ; 7(12): e51018, 2012.
Article in English | MEDLINE | ID: mdl-23227228

ABSTRACT

Associative classification mining (ACM) can be used to provide predictive models with high accuracy as well as interpretability. However, traditional ACM ignores the difference of significances among the features used for mining. Although weighted associative classification mining (WACM) addresses this issue by assigning different weights to features, most implementations can only be utilized when pre-assigned weights are available. In this paper, we propose a link-based approach to automatically derive weight information from a dataset using link-based models which treat the dataset as a bipartite model. By combining this link-based feature weighting method with a traditional ACM method-classification based on associations (CBA), a Link-based Associative Classifier (LAC) is developed. We then demonstrate the application of LAC to biomedical datasets for association discovery between chemical compounds and bioactivities or diseases. The results indicate that the novel link-based weighting method is comparable to support vector machine (SVM) and RELIEF method, and is capable of capturing significant features. Additionally, LAC is shown to produce models with high accuracies and discover interesting associations which may otherwise remain unrevealed by traditional ACM.


Subject(s)
Algorithms , Databases as Topic , Cell Line, Tumor , Humans , Models, Biological , Mutagenicity Tests
3.
J Cheminform ; 4(1): 29, 2012 Nov 23.
Article in English | MEDLINE | ID: mdl-23176548

ABSTRACT

Relating chemical features to bioactivities is critical in molecular design and is used extensively in the lead discovery and optimization process. A variety of techniques from statistics, data mining and machine learning have been applied to this process. In this study, we utilize a collection of methods, called associative classification mining (ACM), which are popular in the data mining community, but so far have not been applied widely in cheminformatics. More specifically, classification based on predictive association rules (CPAR), classification based on multiple association rules (CMAR) and classification based on association rules (CBA) are employed on three datasets using various descriptor sets. Experimental evaluations on anti-tuberculosis (antiTB), mutagenicity and hERG (the human Ether-a-go-go-Related Gene) blocker datasets show that these three methods are computationally scalable and appropriate for high speed mining. Additionally, they provide comparable accuracy and efficiency to the commonly used Bayesian and support vector machines (SVM) methods, and produce highly interpretable models.

SELECTION OF CITATIONS
SEARCH DETAIL
...