Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Water Res ; 253: 121299, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38387265

ABSTRACT

As the key stage for purifying wastewater, elimination of emerging contaminants (ECs) is found to be fairly low in wastewater treatment plants (WWTPs). However, less knowledge is obtained regarding the transformation pathways between various chemical structures of ECs under different treatment processes. This study unveiled the transformation pathways of ECs with different structures in 15 WWTPs distributed across China by simplified network analysis (SNA) we proposed. After treatment, the molecular weight of the whole component of wastewater decreased and the hydrophilicity increased. There are significant differences in the structure of eliminated, consistent and formed pollutants. Amino acids, peptides, and analogues (AAPAs) were detected most frequently and most removable. Benzenoids were refractory. Triazoles were often produced. The high-frequency reactions in different WWTPs were similar, (de)methylation and dehydration occurred most frequently. Different biological treatment processes performed similarly, while some advanced treatment processes differed, such as a significant increase of -13.976 (2HO reaction) paired mass distances (PMDs) in the chlorine alone process. Further, the common structural transformation was uncovered. 4 anti-hypertensive drugs, including irbesartan, valsartan, olmesartan, and losartan, were identified, along with 22 transformation products (TPs) of them. OH2 and H2O PMDs occurred most frequently and in 80.81 % of the parent-transformation product pairs, the intensity of the product was higher than parent in effluents, whose risk should be considered in future assessment activity. Together our results provide a macrography perspective on the transformation processes of ECs in WWTPs. In the future, selectively adopting wastewater treatment technology according to structures is conductive for eliminating recalcitrant ECs in WWTPs.


Subject(s)
Water Pollutants, Chemical , Water Purification , Wastewater , Water Pollutants, Chemical/chemistry , Irbesartan/analysis , Losartan/analysis
2.
Environ Sci Technol ; 58(1): 739-750, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38147428

ABSTRACT

Understanding the reaction mechanism of dissolved organic matter (DOM) during wastewater biotreatment is crucial for optimal DOM control. Here, we develop a directed paired mass distance (dPMD) method that constructs a molecular network displaying the reaction pathways of DOM. It couples direction inference and PMD analysis to extract the substrate-product relationships and delta masses of potentially paired reactants directly from sequential mass spectrometry data without formula assignment. Using this method, we analyze the influent and effluent samples from the bioprocesses of 12 wastewater treatment plants (WWTPs) and build a dPMD network to characterize the core reactome of DOM. The network shows that the first step of the transformation triggers reaction cascades that diversify the DOM, but the highly overlapped subsequent reaction pathways result in similar effluent DOM compositions across WWTPs despite varied influents. Mass changes exhibit consistent gain/loss preferences (e.g., +3.995 and -16.031) but different occurrences across WWTPs. Combined with genome-centric metatranscriptomics, we reveal the associations among dPMDs, enzymes, and microbes. Most enzymes are involved in oxygenation, (de)hydrogenation, demethylation, and hydration-related reactions but with different target substrates and expressed by various taxa, as exemplified by Proteobacteria, Actinobacteria, and Nitrospirae. Therefore, a functionally diverse community is pivotal for advanced DOM degradation.


Subject(s)
Dissolved Organic Matter , Water Purification , Wastewater , Bacteria
3.
Environ Sci Technol ; 57(46): 18236-18245, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37749748

ABSTRACT

The application of deep learning (DL) models for screening environmental estrogens (EEs) for the sound management of chemicals has garnered significant attention. However, the currently available DL model for screening EEs lacks both a transparent decision-making process and effective applicability domain (AD) characterization, making the reliability of its prediction results uncertain and limiting its practical applications. To address this issue, a graph neural network (GNN) model was developed to screen EEs, achieving accuracy rates of 88.9% and 92.5% on the internal and external test sets, respectively. The decision-making process of the GNN model was explored through the network-like similarity graphs (NSGs) based on the model features (FT). We discovered that the accuracy of the predictions is dependent on the feature distribution of compounds in NSGs. An AD characterization method called ADFT was proposed, which excludes predictions falling outside of the model's prediction range, leading to a 15% improvement in the F1 score of the GNN model. The GNN model with the AD method may serve as an efficient tool for screening EEs, identifying 800 potential EEs in the Inventory of Existing Chemical Substances of China. Additionally, this study offers new insights into comprehending the decision-making process of DL models.


Subject(s)
Estrogens , Neural Networks, Computer , Reproducibility of Results , China , Uncertainty
4.
J Hazard Mater ; 453: 131362, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37080036

ABSTRACT

Advanced oxidation processes based on radicals and/or non-radical catalysis are emerging as promising technologies for eliminating pharmaceuticals (PhACs) from wastewater. However, the respective contributions of different removal pathways (radicals or non-radical) for PhAC degradation still lacks quantitative investigation. Zero-valent iron and carbon nanotubes are frequently used to generate both radicals and non-radical species via the activation of persulfate (Fe0/SWCNT/PDS). Herein, the removal kinetics of 1 µM PhACs are depicted, and the corresponding synergistic mechanism of the Fe0/SWCNT/PDS process is discussed. Coupled removal pathways showed the higher degradation of PhACs than the individual pathways. Radicals quenching studies combined with electron spin resonance characterisation suggested that the radical-based removal pathway tends to attack electron-deficient organics, whereas its counterpart is more likely to work on electron-rich organics. From the perspectives of the contribution rate, the redox cycles of conjugated Fe species play a more important role in the generation of radicals than free Fe species, and the faster electron transfer in the conductive bridge offered by SWCNT is responsible for the effective corrosion of Fe0 and the decomposition of PDS. Six real wastewater samples were used to prove the generality of the above removal contribution, regardless of the wastewater samples, and the results suggested that identical attack patterns were obtained in all real wastewater samples, although coexistence matrix slightly suppressed PhAC removal. This work provides a deeper insight into the high-performance working mechanism on synergistic interactions and contaminant removal in a combined catalysis system.


Subject(s)
Nanotubes, Carbon , Water Pollutants, Chemical , Wastewater , Water Pollutants, Chemical/analysis , Iron , Oxidation-Reduction , Pharmaceutical Preparations
5.
Water Res ; 235: 119895, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36989798

ABSTRACT

Biotransformation of emerging contaminants (ECs) is of importance in various natural and engineered systems to eliminate the adverse effects of ECs toward organisms. In wastewater, structurally similar ECs may transform through similar reactions triggered by common enzymes. However, the transformation pattern for them was scarcely studied. To fill the research gaps, five sulfonamides were chosen as the targeted ECs with similar structure to explore the transformation pattern in wastewater biological treatment experiments at lab scale. Through molecular networking based nontarget screening, 45 transformation products (TPs) of sulfonamides were identified and 14 of them were newly found. On the basis, five specific transformation patterns were summarized for sulfonamides by transformation pathways comparing, reaction frequency analyzing and dominant TPs comparing. Results suggested that pterin-chelation and formylation (dominant transformation pathway) and acetylation, methylation and deamination reactions were commonly occurred for sulfonamides in wastewater. Among them, the role of formylation as the dominant transformation pathway for sulfonamides transformed in wastewater was firstly reported in present study. Subsequent frontier molecular orbital calculation suggested the active site of amino (N1H2-) may contribute the specific transformation pattern of sulfonamides. Present study reveals the specific transformation pattern of sulfonamides from the aspect of TPs and transformation pathways. In the future, knowledge on the specific transformation pattern can be used to regulate and enhance the removal of a class of ECs with similar structure rather than just one of ECs.


Subject(s)
Wastewater , Water Pollutants, Chemical , Sulfonamides , Sulfanilamide , Biotransformation , Water Pollutants, Chemical/chemistry
6.
Water Res ; 232: 119509, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36801596

ABSTRACT

Citalopram (CIT) and sertraline (SER) are highly consumed antidepressants worldwide and have been extensively detected in wastewater. Due to the incomplete mineralization, transformation products (TPs) of them can be detected in wastewater. Comparing with parent compounds, knowledge on TPs are limited. To fill these research gaps, lab-scale batch experiments, WWTPs sampling and in silico toxicity prediction were implemented to investigate the structure, occurrence and toxicity of TPs. Based on molecular networking nontarget strategy, 13 TPs of CIT and 12 TPs of SER were tentatively identified. Among them, 4 TPs from CIT and 5 TPs from SER were newly found in present study. TPs identification results compared with results obtained from previous nontarget strategies demonstrated that the excellent performances for molecular networking strategy on candidate TPs prioritizing and new TPs finding, especially for low abundance TPs. Further, transformation pathways for CIT and SER in wastewater were proposed. Newly identified TPs provided insights on defluorination, formylation and methylation for CIT and dehydrogenation, N-malonylation and N-acetoxylation for SER transformed in wastewater. Nitrile hydrolysis and N-succinylation were found to be the dominant transformation pathways for CIT and SER in wastewater, respectively. WWTPs sampling results shown the concentrations of SER and CIT ranged from 0.46 to 28.66 ng/L and 17.16 to 58.36 ng/L. In addition, 7 TPs of CIT and 2 TPs of SER found in lab-scale wastewater samples were found in WWTPs. In silico results suggested 2 TPs of CIT may be more toxic than CIT toward all three trophic levels organisms. Present study provides new insights into the transformation processes of CIT and SER in wastewater. In addition, the necessity of paying more attention on TPs was further highlighted from the aspects of toxicity for TPs of CIT and SER in effluent of WWTPs.


Subject(s)
Wastewater , Water Pollutants, Chemical , Sertraline , Citalopram/chemistry , Water Pollutants, Chemical/chemistry
7.
Sci Total Environ ; 871: 162065, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36754326

ABSTRACT

Removal of pharmaceuticals is essential in wastewater treatment systems due to their release and accumulation in the environment, which are raising issues for the environment and human health. A mathematical model could be used to predict pharmaceuticals removal under various operational parameters and assess the contributions of different removal pathways to pharmaceuticals removal. Here an ASM-PhACs model was established to describe pharmaceuticals removal including diclofenac (DCF), erythromycin (ERY), gemfibrozil (GEM) and carbamazepine (CBZ) removal in activated sludge system. The pharmaceuticals removal processes linked to co-metabolic biodegradation through the growth of ammonia oxidizing bacteria (AOB), metabolic biodegradation through AOB, metabolic biodegradation through heterotrophic bacteria (HB) and sludge adsorption were incorporated into activated sludge model (ASM1) framework. The kinetic equations were established for each pharmaceuticals removal process. To provide the experimental data for model calibration and validation, two sets of batch tests were designed and conducted in the laboratory scale using SBR technology. According to the batch test data and results of sensitivity analysis, the newly added parameters and some original default parameters affecting pharmaceuticals removal processes were screened and calibrated. The model could accurately simulate all the dynamics of chemical oxygen demand, nitrogen and pharmaceuticals under various conditions. To explore the effect of operational parameters on pharmaceuticals removal efficiency, the wide range of operational parameters was analyzed during model simulation. According to the simulation results, both influent NH4+-N concentration and DO were found to be the significant parameters that impact the removal of DCF, ERY and GEM. AOB biodegradation played an important role in DCF, ERY and GEM removal. The developed model framework helps to investigate the removal mechanisms and key influencing factors of pharmaceuticals removal, thus providing guidelines for reactor design, operation and optimization aiming at pharmaceuticals removal.


Subject(s)
Sewage , Water Pollutants, Chemical , Humans , Sewage/microbiology , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Heterotrophic Processes , Diclofenac/metabolism , Pharmaceutical Preparations , Waste Disposal, Fluid/methods , Bioreactors
8.
Environ Sci Process Impacts ; 25(1): 75-84, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36476784

ABSTRACT

Artificial sweeteners discharged into aquatic environments have raised concern because of their ubiquitous occurrence and potential biological effect. And some of them, such as sucralose (SUC) and acesulfame (ACE), have been identified as emerging contaminants. Wastewater treatment plants (WWTPs) are considered as important sources and sinks of artificial sweeteners discharged into the environment. In this study, the occurrence and removal of four representative artificial sweeteners in 12 WWTPs located in different provinces of China were investigated. The results showed that artificial sweeteners were detected widely in the investigated WWTPs. The median concentrations of the four target artificial sweeteners were detected in influents at levels of 0.03-3.85 µg L-1 and decreased in the order of SUC > ACE > aspartame (APM) > neotame (NTM). Additionally, the per capita mass loads of total artificial sweeteners in the WWTPs could be affected by the location of the WWTPs and were higher in southern cities than in northern cities. It was also found that there was a distinct linear correlation between the per capita mass load of ACE in influents and population density. During the treatment of WWTPs, the overall removal efficiency of artificial sweeteners ranged from -116% to 99.1%. Among the target artificial sweeteners, SUC and ACE might have potential risk to aquatic environments based on the calculation of the risk quotient. Thus, advanced treatment processes were carried to further remove SUC and ACE to reduce their long-term cumulative effect. Overall, UV/H2O2 and UV/PDS showed a better effect than granular activated carbon (GAC) adsorption in the removal of artificial sweeteners. The reaction constants of ACE by UV/H2O2 and UV/PDS were higher than those of SUC, which is related to molar extinction coefficients. Meanwhile, the adsorption ability of GAC adsorption for SUC was better than that of ACE, which is in correlation with the octanol-water partition coefficient. By comparison of removal efficiency, UV/PDS was considered as the most suitable advanced treatment process to remove ACE and SUC.


Subject(s)
Water Pollutants, Chemical , Water Purification , Sweetening Agents/analysis , Wastewater , Hydrogen Peroxide , Water Pollutants, Chemical/analysis , China , Water Purification/methods
9.
Sci Total Environ ; 856(Pt 1): 158844, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36126716

ABSTRACT

Progesterone (P4) and norgestrel (NGT) are two steroid progestogens that can pose adverse effects on aquatic organisms at ng/L levels. Despite increasing concern on their occurrence and removal in wastewater, their fate in the wastewater treatment process has not been well documented. This study identified the transformation products (TPs) of P4 and NGT in anaerobic/anoxic/oxic (A/A/O) process. Potential functional genes involved in biotransformation of P4 and NGT were explored. The elimination or formation behavior of P4, NGT and convinced TPs along various units of A/A/O process was revealed through the mass flow. Results showed that 12 and 13 TPs were identified in the P4 and NGT groups respectively, wherein 10 identical TPs and C-19 structures transformation pathways were observed in both groups. Six genes were found that may be involved in dehydrogenation and isomerization reactions in the pathways. Mass flow indicated that P4 and NGT were mainly eliminated in anaerobic and anoxic units, while convinced TPs mainly formed in anaerobic and anoxic units and were then eliminated in aerobic unit. Further, the ecological risks of the effluent should not be ignored as residual compounds including P4 or NGT and their TPs in the effluent still posed adverse effects on zebrafish transcript levels.


Subject(s)
Norgestrel , Water Pollutants, Chemical , Animals , Progesterone/metabolism , Zebrafish/metabolism , Anaerobiosis , Water Pollutants, Chemical/analysis , Wastewater/chemistry , Biotransformation , Waste Disposal, Fluid/methods
10.
Sci Total Environ ; 835: 155374, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35461936

ABSTRACT

In this study, the spatiotemporal variation in the occurrence of 19 endocrine-disrupting chemicals (EDCs) spanning four seasons in wastewater treatment plants (WWTPs) located in 17 Chinese cities was investigated. Removal efficiencies for selected EDCs in 17 WWTPs over four seasons were analyzed. Contributions of conventional and advanced process segments to the removal efficiency of EDCs were explored, which compared the removal efficacies of a variety of secondary and advanced processes for EDCs. Results showed that EDCs were extensively detected in WWTPs, with bisphenol A (BPA), dehydroepiandrosterone (DHRD), androstenedione (ADD), and pregnanediol (PD) being dominant in excess sludge and wastewater. Seasonally, the greatest seasonal differences were observed in the influent, with the concentrations of 12 EDCs varying significantly between seasons. Spatially, concentrations of BPA, DHRD, testosterone (TTR), and estriol (E3) in the influent significantly varied between the northern and southern WWTPs. Fourteen EDCs were removed steadily among the four seasons, while most EDCs had considerable removal differences between WWTPs. Contribution of the conventional process segment to the removal of individual EDCs was higher than that of the advanced process segment in WWTPs. Quantitative meta-analysis indicated that the anaerobic-anoxic-anaerobic (AAO) process in the various secondary processes had the highest removal of the target EDCs. Mass balance analysis further suggested that biodegradation in the aerobic tank of the AAO process was the major pathway for most EDCs removal. This study systematically depicts the spatiotemporal distribution of EDCs in WWTPs located across China and deepens the comprehension of EDCs removal in Chinese WWTPs from a treatment process perspective.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Water Purification , China , Endocrine Disruptors/analysis , Environmental Monitoring/methods , Sewage/analysis , Waste Disposal, Fluid/methods , Wastewater/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods
11.
Water Res ; 216: 118255, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35325822

ABSTRACT

Dissolved organic matter (DOM) mediates the microbial transformation of micropollutants, including norgestrel (NGT) in natural waters. However, little is known of the effect of complex and variable wastewater-derived DOM composition on NGT degradation during wastewater treatment. In this study, the relationship between the compositions of initial DOM and NGT removal efficiencies of 17 wastewater treatment plants (WWTPs) in spring and summer were analyzed. The different molecular composition of DOM was selected in the lab to further explore its effect on NGT degradation by activated sludge. Results indicated that the DOM composition was a substantial driver of NGT removal in WWTPs. The discrepancies in the initial DOM composition contributed to the differences in the kinetics of NGT degradation by activated sludge. The larger rapid decay phase rates of NGT are usually accompanied by a large proportion of labile substances in DOM. High-throughput sequencing and ultrahigh-resolution mass spectrometry were used to further analyze the evolution of bacterial communities and DOM molecular composition were combined with network analysis to reveal the intrinsic relationship that how DOM composition affected NGT degradation by regulating core microbes. Eighty-nine core OTUs were significantly associated with NGT degradation, and 73 occurred in the rapid decay phase, implying that NGT degradation was mainly regulated by the initial composition of DOM. Nine major transformation products were identified in different groups with widely varying concentrations or relative abundances of these transformation products. This work provides valuable insights into the effects of wastewater-derived DOM composition on NGT degradation by activated sludge and innovatively explores the influence mechanisms from the bacterial community and molecular characterization perspectives.


Subject(s)
Sewage , Wastewater , Bacteria , Dissolved Organic Matter , Norgestrel , Sewage/microbiology
12.
J Environ Sci (China) ; 116: 220-228, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35219420

ABSTRACT

The characteristics of dissolved organic matter (DOM) can significantly affect the degradation of target compounds by the advanced oxidation processes. In this study, the effects of the different hydrophobicity/hydrophilicity fractions, molecular weight (MW) fractions, fluorescence components and molecular components of DOM extracted from municipal wastewater on the degradation of 4 pharmaceutically active compounds (PhACs), including carbamazepine, clofibric acid, atenolol and erythromycin by the UV/H2O2 process were investigated. The results showed that the degradation rate constants of 4 PhACs decreased dramatically in the presence of DOM. The linear regressions of 4 PhACs degradation as a function of specific fluorescence intensity (SFI) are exhibited during the degradation of 4 PhACs and the SFI may be used to evaluate effect of DOM on target compounds in wastewater. The hydrophobic acid (HPO-A) exhibited the strongest inhibitory effect on degradation of 4 PhACs during oxidation process. The small MW fractions of DOM significantly inhibited the degradation of 4 PhACs during oxidation process. Among three fluorescence components, hydrophobic humic-like substances may significantly inhibit the degradation of 4 PhACs during oxidation process. At the molecular level, the formulas may be derived from terrestrial sources. CHO compound may significantly inhibit the degradation of 4 PhACs during oxidation process on formula classes. The unsaturated hydrocarbons, carbohydrates and tannins compounds may significantly inhibit the effectiveness of the UV/H2O2 process on compound classes.


Subject(s)
Dissolved Organic Matter , Wastewater , Water Pollutants, Chemical , Hydrogen Peroxide , Wastewater/chemistry , Water Pollutants, Chemical/analysis
13.
Water Res ; 211: 118038, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35045367

ABSTRACT

This study investigated the overall occurrence and spatiotemporal variation of 19 progestogens in 608 samples collected from 17 wastewater treatment plants (WWTPs) distributed across China during four seasons. The aqueous removal efficiencies of progestogens were calculated and the efficacies of process segments, secondary and advanced processes, and process units in the removal of progestogens were explored. The results indicated that progestogens were widely detected in investigating WWTPs, with the progesterone, dydrogesterone, dienogest, ethisterone, and norethindrone were always dominant in the influent, secondary effluent, final effluent, and excess sludge. Seasonally, the influent exhibited more variability than the other matrices, that 10 progestogens concentrations varied significantly during the four seasons. Spatially, the influent concentrations of progestogens were generally higher in northern WWTPs than that in southern WWTPs during spring and summer. Eight progestogens were stably removed by the WWTPs across seasons, and most progestogens varied considerably in removal in different WWTPs. The conventional process segment was the dominant contributor to progestogen removal. The anaerobic-anoxic-oxic process and a combined process consisting of densadeg and cloth media filter and ultraviolet disinfection showed the highest removal of progestogens among various secondary and advanced treatment processes, respectively. Mass balance analysis showed that most progestogens were effectively eliminated in the aerobic unit, with biodegradation being the primary removal pathway. This study presents the first picture of the spatiotemporal dynamics of the distribution of progestogens in WWTPs of China and provides valuable information for better understanding of the occurrence and removal of progestogens in WWTPs.


Subject(s)
Water Pollutants, Chemical , Water Purification , China , Environmental Monitoring , Progestins/analysis , Sewage , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical/analysis
14.
Environ Res ; 205: 112521, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34902380

ABSTRACT

Regeneration and reuse of draw solute (DS) is a key challenge in the application of forward osmosis (FO) technologies. Herein, EDTA-Na2 was studied as a recoverable DS for water extraction by taking advantages of its pH-responsive property. The FO system using EDTA DS achieved a higher water flux of 2.22 ± 0.06 L m-2 h-1 and a significantly lower reverse salt flux (RSF) of 0.06 ± 0.01 g m-2 h-1, compared to that with NaCl DS having either the same DS concentration or the same Na+ concentration. The suitable pH range for the application of EDTA DS was between 4.0 and 10.5. A simple recovery method via combined pH adjustment and microfiltration was employed to recover EDTA DS and could achieve the recovery efficiency (at pH 2) of 96.26 ± 0.48%, 97.13 ± 1.03% and 98.56 ± 1.40% by using H2SO4, H3PO4 and HCl, respectively. The lowest acid cost for DS recovery was estimated from 0.0012 ± 0.0001 to 0.0162 ± 0.0003 $ g-1 by using H2SO4. The recovered EDTA DS could be reused in the subsequent FO operation and the overall recovery efficiency was 94.4% for four reuse cycles. These results have demonstrated the feasible of EDTA-Na2 DS and a potentially cost-effective recovery approach, and encouraged further exploration of using EDTA-based compounds as a draw solute for FO applications.


Subject(s)
Water Purification , Water , Edetic Acid/chemistry , Membranes, Artificial , Osmosis , Wastewater , Water Purification/methods
15.
Sci Total Environ ; 778: 146278, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33714830

ABSTRACT

The compositional characteristics of dissolved organic matter (DOM) in pharmaceutical wastewater effluent can affect the further improvement and application of the ozone treatment process. The present study investigated the changes of chemical structures, molecular weight (MW) distribution, hydrophobicity/hydrophilicity distribution, fluorescence properties and the molecular composition of DOM in pharmaceutical wastewater effluent during ozonation. Besides, the toxicity change of pharmaceutical wastewater effluent during ozonation was estimated. The results show that ozone is prone to attack high MW fractions, which contributes the most to the UV254 value and could improve the biodegradability of refractory DOM in pharmaceutical wastewater effluent. Hydrophobic acid contained the most aromatic and unsaturated bonded organic matter, and was more readily oxidized under ozonation. In fluorescent components, ozonation significantly decreased humic-like acid compounds, and hydrophobic humic-like compounds exhibited the highest removal through parallel factor analysis. At the molecular level, the main organics removed by ozone were compounds with high H/C and low O/C, especially compounds where H/C >1.5. The CHO, CHON and CHOS compounds exhibited high removal under ozonation in formula classes. Lignin compounds, condensed aromatics compounds, and unsaturated hydrocarbons were effectively removed by ozone in compound classes. After ozonation, the number of lipid and sugar compounds increased. In addition, O/Cwa (the intensity-weighted average parameters of O/C) and NOSCwa (nominal oxidation state of carbon) were significantly positively correlated with acute toxicity on the luminescence. With the increase of ozone dose, the acute toxicity of pharmaceutical wastewater effluent after ozonation first decreased and then increased.


Subject(s)
Ozone , Pharmaceutical Preparations , Water Pollutants, Chemical , Water Purification , Organic Chemicals , Wastewater/analysis , Water Pollutants, Chemical/analysis
16.
Chemosphere ; 251: 126375, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32151811

ABSTRACT

Fluorescent dissolved organic matter (FDOM), having complex structures like aromatic structure and double bond structure, is able to represent relatively refractory parts of dissolved organic matter (DOM). This study investigated the distribution of FDOM in the influents and the removal in the secondary effluents of 15 municipal wastewater treatment plants (WWTPs) in 15 provincial capitals of China. Eight components have been identified using excitation emission matrix combined with parallel factor analysis (EEM-PARAFAC). Tryptophan-like (C1 or C4), terrestrial humic-like (C2) and microbial humic-like (C3) fluorescent components were major FDOM components in municipal wastewater, appearing in 11 WWTPs simultaneously. The removal of total fluorescence was generally about 30%-40%, while hydrophobic humic-like compounds (C5 and C8) were the most refractory components with 4%-16% removal and C3 was the second most refractory with -11%-41% removal. The compositions of FDOM in municipal wastewater were different in northeast/west and middle/east regions according to the self-organized map (SOM) analysis. Wastewater sources had more important influence on fluorescent characteristics of secondary effluents than biological treatment processes. Besides, this study found that humification index (HIX) was the most suitable index to describe the bulk fluorescent character of wastewater since it had a good correlation with abundance, removal and ratios of main fluorescent components either in the influents or in the secondary effluents.


Subject(s)
Environmental Monitoring , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , China , Coloring Agents , Factor Analysis, Statistical , Fluorescence , Humic Substances/analysis , Middle East , Spectrometry, Fluorescence , Wastewater/analysis
17.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 36(8): 781-784, 2019 Aug 10.
Article in Chinese | MEDLINE | ID: mdl-31400127

ABSTRACT

OBJECTIVE: To determine the expression profile of microRNA (miRNA) in peripheral blood mononuclear cells (PBMC) and immune factors in pregnant women with hepatitis B virus (HBV) infection. METHODS: A total of 182 pregnant women infected with HBV were randomly selected, with 40 healthy pregnant women and 35 non-pregnant women as controls. High-throughput sequencing was used to detect RNA in the PBMC of all subjects. Indirect ELISA method was used to determine the changes of cytokines in peripheral blood samples. RESULTS: Compared with the control group, 18 differentially expressed miRNA were identified in those with HBV infection (P< 0.01). Among these, miR-3607-3p, miR-20a, miR-1296, miR-153-1 and miR-X4 may directly regulate the transcriptional level of target genes including IL-10, IL-18, IL-16, MCP-1, NUP50 and CCR1. Meanwhile, peripheral blood cytokines IL-10, IL-18, IL-16 and MCP-1 were significantly increased in those with HBV infection (P<0.01), with the expression level of IL-16 and MCP-1 being strongly correlated with the viral load. CONCLUSION: The expression profiles of miRNA in PBMC and cytokines in peripheral blood can change significantly during pregnancy, both may be involved in the immune response to HBV infection.


Subject(s)
Cytokines/blood , Hepatitis B/blood , Leukocytes, Mononuclear/metabolism , MicroRNAs/blood , DNA, Viral , Female , Hepatitis B virus , Humans , Pregnancy
18.
Chemosphere ; 237: 124371, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31369902

ABSTRACT

Public concerns about potential ecological risks of androgens discharged to the environment through wastewater treatment plants (WWTPs) has resulted in an increased interest regarding the occurrence and fate of androgens in WWTPs. In this study, the occurrence and removal of eight androgens from 12 municipal WWTPs distributed in eleven cities in China were investigated. The composition profiles of eight androgens in influent, effluent, and excess sludge were studied. Multiple factor analyses were performed to reveal the factors affecting the distribution of androgens in WWTP influent. Results showed similar composition profiles of androgens in the studied WWTPs, with androsterone and dehydroepiandrosterone confirmed as the dominant androgens. The distributions of androgens in WWTP influent were related to the chemical oxygen demand in influent and the gross domestic product (GDP) of WWTP-associated cities. The target androgens have high aqueous removal rates, with a mean removal rate of >90%. Additionally, the behaviors of androgens were evaluated by mass balance along anaerobic-anoxic-oxic (AAO) processes in a WWTP, in which many of the androgens were eliminated mainly in the anaerobic tank. Further, 15 biotransformation products of testosterone were identified under anaerobic, anoxic, and aerobic sludge, respectively. Based on these metabolites, a general biotransformation pathway of testosterone under anaerobic, anoxic, and aerobic sludge is presented.


Subject(s)
Androgens/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Androgens/metabolism , Androsterone/analysis , China , Cities , Sewage/chemistry , Testosterone/metabolism , Waste Disposal Facilities , Waste Disposal, Fluid , Water Pollutants, Chemical/metabolism , Water Purification
19.
Sci Total Environ ; 668: 1191-1199, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-31018459

ABSTRACT

Progestagens discharged from municipal wastewater treatment plants (WWTPs) have increasingly gained attention due to their potential risks to the aquatic organisms. However, limited information is available on the occurrence and removal of various progestagens in WWTPs in different cities of China. This work investigated the occurrence and removal of 11 progestagens in 21 WWTPs from 19 Chinese cities. Results showed that progestagens are widely distributed in the investigated WWTPs, with higher influent concentrations of total progestagens in northern WWTPs. The concentration of progestagens in WWTP influent were closely correlated with influent quality, service population and daily service volume of the WWTPs. Additionally, progesterone (PGT) and dydrogesterone (DDT) were two predominant progestagens in influent, effluent and excess sludge. Up to 5 of 11 progestagens showed high aqueous removal efficiencies (median removal efficiency >90%), whereas megestrol acetate (MTA), chlormadinone acetate (CMA), drospirenone (DSP) and levonorgestrel (LNG) had a removal efficiency of below 50%. Specially, the behaviors of progestagens along the anaerobic-anoxic-oxic of a WWTP were further explored and the aerobic tank is the main contributor to the removal of progestagens. Finally, in the effluent of these 21 WWTPs, daily mass loadings of the total progestagens ranged from 0.51 to 10.4 g d-1. Notably, LNG exhibited high potential risk to the fish base on risk quotient.


Subject(s)
Progestins/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification , China , Environmental Monitoring , Progestins/chemistry , Risk Assessment , Water Pollutants, Chemical/chemistry
20.
Exp Ther Med ; 14(2): 1241-1247, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28781621

ABSTRACT

Skeletal muscle atrophy is often caused by catabolic conditions including fasting, disuse, aging and chronic diseases, such as chronic obstructive pulmonary disease. Atrophy occurs when the protein degradation rate exceeds the rate of protein synthesis. Therefore, maintaining a balance between the synthesis and degradation of protein in muscle cells is a major way to prevent skeletal muscle atrophy. Ginsenoside Rg1 (Rg1) is a primary active ingredient in Panax ginseng, which is considered to be one of the most valuable herbs in traditional Chinese medicine. In the current study, Rg1 was observed to inhibit the expression of MuRF-1 and atrogin-1 in C2C12 muscle cells in a starvation model. Rg1 also activated the phosphorylation of mammalian target of rapamycin (mTOR), protein kinase B (AKT), and forkhead transcription factor O, subtypes 1 and 3a. This phosphorylation was inhibited by LY294002, a phosphatidylinositol 3-kinase inhibitor. These data suggest that Rg1 may participate in the regulation of the balance between protein synthesis and degradation, and that the function of Rg1 is associated with the AKT/mTOR/FoxO signaling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...