Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Pathog ; 185: 106444, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37951410

ABSTRACT

Bovine parainfluenza virus type 3 (BPIV3) is a viral respiratory pathogen of cattle that causes substantial economic losses. A replicating-defective recombinant human adenovirus type 5 (HAd5), carrying a fusion protein of BPIV3 genotype C (HAd5-F), was constructed and evaluated for its immunogenicity and protective efficacy in mice. After intramuscular injection with the HAd5-F, the IgG titers against F proteins increased to 1:102,400, and virus-neutralizing titers increased to 1:256, significantly higher than those in the group injected with inactivated BPIV3C in mice (p<0.05). The splenic CD4+/CD8+T lymphocytes and IFN-γ+/IL-4+ cytokine percentages were more significant in the HAd5-F group than those in the control group. A BPIV3C challenge in a mouse model was used to assess protective efficacy of the HAd5-F. The viral loads in the lungs and tracheas of mice immunized with the HAd5-F were significantly lower than those in the control group (p<0.0001). There were no significant histopathological alterations in the lungs of mice vaccinated with the HAd5-F. These findings suggested that the HAd5-F elicited excellent immunity against BPIV3C infection.


Subject(s)
Adenoviridae , Parainfluenza Virus 3, Human , Animals , Cattle , Humans , Mice , Adenoviridae/genetics , Antibodies, Viral , Parainfluenza Virus 3, Bovine/genetics , Recombinant Proteins/genetics , Genotype
2.
Bioresour Technol ; 247: 319-326, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28950141

ABSTRACT

In order to explore physicochemical and biological effects on detachment and activity recovery of aging biofilm by enzyme and surfactant treatments, two kinds of biofilm processes, i.e. biological aeration filter (BAF) and moving bed biofilm reactor (MBBR), and multiple indicators including water quality, biofilm morphology, activity and microbial community structure, were employed. Results showed that detachment of aging biofilm was mainly attributed by extracellular polymeric substance (EPS) solubilization and dispersion, and activity recovery of aging biofilm mainly depended on biological effects of dominant bacteria. Phosphorus metabolism related bacteria, such as Microbacterium and Micropruina, were responsible for BAF biofilm regeneration. More abundant microbial community structure of MBBR regenerated biofilm was found, and biofilm activity was not only related to phosphorus metabolism related bacteria, but also to denitrifying bacteria. Rhamnolipid performed best on aging biofilm detachment and regeneration, giving a clue for effective activation of aging biofilm in wastewater treatment systems.


Subject(s)
Bioreactors , Bacteria , Biofilms , Surface-Active Agents , Wastewater
3.
Bioresour Technol ; 219: 403-410, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27513646

ABSTRACT

In situ activity recovery of aging biofilm in the biological aerated filter (BAF) is an important but underappreciated problem. Lab-scaled BAFs were established in this study and three kinds of surfactants containing sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS) and rhamnolipid were employed. Multiple indicators including effluent qualities, dissolved organic matters, biofilm physiology and morphology characteristics were investigated to explore the mechanisms. Results showed that removal rates of effluent COD in test groups significantly recovered to the level before aging. Compared with the control, effluent in SDBS and rhamnolipid-treated groups obtained more protein-like and humic-like substances, respectively. Furthermore, great live cell ratio, smooth surface and low adhesion force of biofilm were observed after rhamnolipid treatment, which was in consistent with good effluent qualities in the same group. This is the first report of applying rhamnolipid for in situ activity recovery of aging biofilm in bioreactors.


Subject(s)
Biofilms , Bioreactors/microbiology , Surface-Active Agents/chemistry , Glycolipids/chemistry , Sodium Dodecyl Sulfate/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...