Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Immunol ; 212(8): 1345-1356, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38407485

ABSTRACT

The one-carbon metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is critical for cancer cell proliferation and immune cell phenotypes, but whether it can contribute to macrophage inflammatory responses remains unclear. In this study, we show that MTHFD2 was upregulated by LPS in murine macrophages upon activation of the TLR4-MyD88-IKKα/ß-NF-κB signaling pathway. MTHFD2 significantly attenuated LPS-induced macrophage proinflammatory cytokine production through its enzymatic activity. Notably, ablation of myeloid MTHFD2 rendered mice more sensitive to septic shock and CCl4-induced acute hepatitis. Mechanistically, MTHFD2 restrained IKKα/ß-NF-κB activation and macrophage inflammatory phenotype by scavenging reactive oxygen species through the generation of NADPH. Our study reveals MTHFD2 as a "self-control" mechanism in macrophage-mediated inflammatory responses.


Subject(s)
I-kappa B Kinase , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Reactive Oxygen Species , I-kappa B Kinase/metabolism , Lipopolysaccharides , Signal Transduction , Macrophages
2.
Cell Rep ; 42(5): 112481, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37149861

ABSTRACT

The one-carbon metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is involved in the regulation of tumor oncogenesis and immune cell functions, but whether it can contribute to macrophage polarization remains elusive. Here, we show that MTHFD2 suppresses polarization of interferon-γ-activated macrophages (M(IFN-γ)) but enhances that of interleukin-4-activated macrophages (M(IL-4)) both in vitro and in vivo. Mechanistically, MTHFD2 interacts with phosphatase and tensin homolog (PTEN) to suppress PTEN's phosphatidylinositol 3,4,5-trisphosphate (PIP3) phosphatase activity and enhance downstream Akt activation, independent of the N-terminal mitochondria-targeting signal of MTHFD2. MTHFD2-PTEN interaction is promoted by IL-4 but not IFN-γ. Furthermore, amino acid residues (aa 215-225) of MTHFD2 directly target PTEN catalytic center (aa 118-141). Residue D168 of MTHFD2 is also critical for regulating PTEN's PIP3 phosphatase activity by affecting MTHFD2-PTEN interaction. Our study suggests a non-metabolic function of MTHFD2 by which MTHFD2 inhibits PTEN activity, orchestrates macrophage polarization, and alters macrophage-mediated immune responses.


Subject(s)
Interleukin-4 , Neoplasms , Humans , Interleukin-4/metabolism , PTEN Phosphohydrolase/metabolism , Macrophages/metabolism , Neoplasms/metabolism , Interferon-gamma/pharmacology , Interferon-gamma/metabolism , Protein Binding
3.
Dev Cell ; 58(5): 398-415.e7, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36868233

ABSTRACT

The cell cycle is key to life. After decades of research, it is unclear whether any parts of this process have yet to be identified. Fam72a is a poorly characterized gene and is evolutionarily conserved across multicellular organisms. Here, we have found that Fam72a is a cell-cycle-regulated gene that is transcriptionally and post-transcriptionally regulated by FoxM1 and APC/C, respectively. Functionally, Fam72a directly binds to tubulin and both the Aα and B56 subunits of PP2A-B56 to modulate tubulin and Mcl1 phosphorylation, which in turn affects the progression of the cell cycle and signaling of apoptosis. Moreover, Fam72a is involved in early responses to chemotherapy, and it efficiently antagonizes various anticancer compounds such as CDK and Bcl2 inhibitors. Thus, Fam72a switches the tumor-suppressive PP2A to be oncogenic by reprogramming its substrates. These findings identify a regulatory axis of PP2A and a protein member in the cell cycle and tumorigenesis regulatory network in human cells.


Subject(s)
Protein Phosphatase 2 , Tubulin , Humans , Apoptosis/genetics , Cell Proliferation/genetics , Phosphorylation , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Tubulin/metabolism
4.
Adv Sci (Weinh) ; 10(7): e2203528, 2023 03.
Article in English | MEDLINE | ID: mdl-36642839

ABSTRACT

Metabolites are important for cell fate determination. Fructose-1,6-bisphosphate (F1,6P) is the rate-limiting product in glycolysis and the rate-limiting substrate in gluconeogenesis. Here, it is discovered that the nuclear-accumulated F1,6P impairs cancer cell viability by directly binding to high mobility group box 1 (HMGB1), the most abundant non-histone chromosome structural protein with paradoxical roles in tumor development. F1,6P disrupts the association between the HMGB1 A-box and C-tail by targeting K43/K44 residues, inhibits HMGB1 oligomerization, and stabilizes P53 protein by increasing P53-HMGB1 interaction. Moreover, F1,6P lowers the affinity of HMGB1 for DNA and DNA adducts, which sensitizes cancer cells to chemotherapeutic drug(s)-induced DNA replication stress and DNA damage. Concordantly, F1,6P resensitizes cancer cells with chemotherapy resistance, impairs tumor growth and enhances chemosensitivity in mice, and impedes the growth of human tumor organoids. These findings reveal a novel role for nuclear-accumulated F1,6P and underscore the potential utility of F1,6P as a drug for cancer therapy.


Subject(s)
Fructosediphosphates , HMGB1 Protein , Neoplasms , Animals , Humans , Mice , DNA Damage , Glycolysis , HMGB1 Protein/chemistry , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Neoplasms/metabolism , Tumor Suppressor Protein p53/genetics , Fructosediphosphates/metabolism
5.
Cell Mol Immunol ; 19(11): 1263-1278, 2022 11.
Article in English | MEDLINE | ID: mdl-36180780

ABSTRACT

Serine metabolism is reportedly involved in immune cell functions, but whether and how serine metabolism regulates macrophage polarization remain largely unknown. Here, we show that suppressing serine metabolism, either by inhibiting the activity of the key enzyme phosphoglycerate dehydrogenase in the serine biosynthesis pathway or by exogenous serine and glycine restriction, robustly enhances the polarization of interferon-γ-activated macrophages (M(IFN-γ)) but suppresses that of interleukin-4-activated macrophages (M(IL-4)) both in vitro and in vivo. Mechanistically, serine metabolism deficiency increases the expression of IGF1 by reducing the promoter abundance of S-adenosyl methionine-dependent histone H3 lysine 27 trimethylation. IGF1 then activates the p38-dependent JAK-STAT1 axis to promote M(IFN-γ) polarization and suppress STAT6-mediated M(IL-4) activation. This study reveals a new mechanism by which serine metabolism orchestrates macrophage polarization and suggests the manipulation of serine metabolism as a therapeutic strategy for macrophage-mediated immune diseases.


Subject(s)
Interleukin-4 , Serine , Interleukin-4/metabolism , Serine/metabolism , Macrophage Activation , Macrophages/metabolism , Interferon-gamma/metabolism
6.
Cell Metab ; 34(9): 1312-1324.e6, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36007522

ABSTRACT

High expression of PD-L1 in tumor cells contributes to tumor immune evasion. However, whether PD-L1 expression in tumor cells is regulated by the availability of nutrients is unknown. Here, we show that in human glioblastoma cells, high glucose promotes hexokinase (HK) 2 dissociation from mitochondria and its subsequent binding and phosphorylation of IκBα at T291. This leads to increased interaction between IκBα and µ-calpain protease and subsequent µ-calpain-mediated IκBα degradation and NF-κB activation-dependent transcriptional upregulation of PD-L1 expression. Expression of IκBα T291A in glioblastoma cells blocked high glucose-induced PD-L1 expression and promoted CD8+ T cell activation and infiltration into the tumor tissue, reducing brain tumor growth. Combined treatment with an HK inhibitor and an anti-PD-1 antibody eliminates tumor immune evasion and remarkably enhances the anti-tumor effect of immune checkpoint blockade. These findings elucidate a novel mechanism underlying the upregulation of PD-L1 expression mediated by aerobic glycolysis and underscore the roles of HK2 as a glucose sensor and a protein kinase in regulation of tumor immune evasion.


Subject(s)
B7-H1 Antigen , Glioblastoma , Cell Line, Tumor , Glucose , Glycolysis , Humans , NF-KappaB Inhibitor alpha/metabolism , Phosphorylation , Tumor Escape
7.
STAR Protoc ; 2(3): 100708, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34386779

ABSTRACT

Innate immunity is the first line of host defense against viral infection. As one of the innate immune cell types, antigen-presenting cells play an important role in the process of antiviral immunity. This protocol describes the analysis of innate immunity induced by vesicular stomatitis virus infection of peritoneal macrophages in vitro and in vivo detection of IFN-ß production and lung injury. For complete details on the use and execution of this protocol, please refer to Shen et al. (2021).


Subject(s)
Cell Separation/methods , Immunity, Innate/physiology , Virus Diseases/diagnostic imaging , Animals , Antigen-Presenting Cells/immunology , Interferon Type I/immunology , Macrophages/immunology , Macrophages, Peritoneal/cytology , Mice , Mice, Inbred C57BL , Protein Serine-Threonine Kinases , Vesicular Stomatitis/immunology , Vesicular stomatitis Indiana virus/immunology , Vesicular stomatitis Indiana virus/pathogenicity , Virus Diseases/immunology , Virus Replication/immunology
8.
Mol Cell ; 81(11): 2303-2316.e8, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33991485

ABSTRACT

Glutaminase regulates glutaminolysis to promote cancer cell proliferation. However, the mechanism underlying glutaminase activity regulation is largely unknown. Here, we demonstrate that kidney-type glutaminase (GLS) is highly expressed in human pancreatic ductal adenocarcinoma (PDAC) specimens with correspondingly upregulated glutamine dependence for PDAC cell proliferation. Upon oxidative stress, the succinyl-coenzyme A (CoA) synthetase ADP-forming subunit ß (SUCLA2) phosphorylated by p38 mitogen-activated protein kinase (MAPK) at S79 dissociates from GLS, resulting in enhanced GLS K311 succinylation, oligomerization, and activity. Activated GLS increases glutaminolysis and the production of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione, thereby counteracting oxidative stress and promoting tumor cell survival and tumor growth in mice. In addition, the levels of SUCLA2 pS79 and GLS K311 succinylation, which were mutually correlated, were positively associated with advanced stages of PDAC and poor prognosis for patients. Our findings reveal critical regulation of GLS by SUCLA2-coupled GLS succinylation regulation and underscore the regulatory role of metabolites in glutaminolysis and PDAC development.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Glutaminase/genetics , Pancreatic Neoplasms/genetics , Succinate-CoA Ligases/genetics , Animals , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/enzymology , Carcinoma, Pancreatic Ductal/mortality , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glutaminase/metabolism , Glutamine/metabolism , Glutathione/metabolism , Heterografts , Humans , Male , Mice , Mice, Nude , NADP/metabolism , Oxidative Stress , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/mortality , Phosphorylation , Prognosis , Protein Processing, Post-Translational , Signal Transduction , Succinate-CoA Ligases/metabolism , Succinic Acid/metabolism , Survival Analysis , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
9.
Cell Metab ; 33(5): 971-987.e6, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33798471

ABSTRACT

Serine metabolism promotes tumor oncogenesis and regulates immune cell functions, but whether it also contributes to antiviral innate immunity is unknown. Here, we demonstrate that virus-infected macrophages display decreased expression of serine synthesis pathway (SSP) enzymes. Suppressing the SSP key enzyme phosphoglycerate dehydrogenase (PHGDH) by genetic approaches or by treatment with the pharmaceutical inhibitor CBR-5884 and by exogenous serine restriction enhanced IFN-ß-mediated antiviral innate immunity in vitro and in vivo. Mechanistic experiments showed that virus infection or serine metabolism deficiency increased the expression of the V-ATPase subunit ATP6V0d2 by inhibiting S-adenosyl methionine-dependent H3K27me3 occupancy at the promoter. ATP6V0d2 promoted YAP lysosomal degradation to relieve YAP-mediated blockade of the TBK1-IRF3 axis and, thus, enhance IFN-ß production. These findings implicate critical functions of PHGDH and the key immunometabolite serine in blunting antiviral innate immunity and also suggest manipulation of serine metabolism as a therapeutic strategy against virus infection.


Subject(s)
Cell Cycle Proteins/metabolism , Immunity, Innate , Lysosomes/metabolism , Serine/metabolism , Transcription Factors/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Line , Histones/metabolism , Humans , Interferon-beta/genetics , Interferon-beta/metabolism , Macrophages/cytology , Macrophages/metabolism , Macrophages/virology , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphoglycerate Dehydrogenase/antagonists & inhibitors , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , RNA Interference , RNA, Small Interfering/metabolism , S-Adenosylmethionine/pharmacology , Signal Transduction/drug effects , Transcription Factors/genetics , Vacuolar Proton-Translocating ATPases/genetics , Vesicular stomatitis Indiana virus/physiology
10.
Nat Commun ; 12(1): 1940, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33782411

ABSTRACT

Metabolic enzymes and metabolites display non-metabolic functions in immune cell signalling that modulate immune attack ability. However, whether and how a tumour's metabolic remodelling contributes to its immune resistance remain to be clarified. Here we perform a functional screen of metabolic genes that rescue tumour cells from effector T cell cytotoxicity, and identify the embryo- and tumour-specific folate cycle enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2). Mechanistically, MTHFD2 promotes basal and IFN-γ-stimulated PD-L1 expression, which is necessary for tumourigenesis in vivo. Moreover, IFN-γ stimulates MTHFD2 through the AKT-mTORC1 pathway. Meanwhile, MTHFD2 drives the folate cycle to sustain sufficient uridine-related metabolites including UDP-GlcNAc, which promotes the global O-GlcNAcylation of proteins including cMYC, resulting in increased cMYC stability and PD-L1 transcription. Consistently, the O-GlcNAcylation level positively correlates with MTHFD2 and PD-L1 in pancreatic cancer patients. These findings uncover a non-metabolic role for MTHFD2 in cell signalling and cancer biology.


Subject(s)
Aminohydrolases/genetics , B7-H1 Antigen/genetics , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Multifunctional Enzymes/genetics , Pancreatic Neoplasms/genetics , Protein Processing, Post-Translational , T-Lymphocytes, Cytotoxic/immunology , Aminohydrolases/antagonists & inhibitors , Aminohydrolases/immunology , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Carcinogenesis/immunology , Carcinogenesis/pathology , Cell Line, Tumor , Embryo, Mammalian , Fibroblasts/immunology , Fibroblasts/pathology , Folic Acid/immunology , Folic Acid/metabolism , Humans , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/immunology , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , Methylenetetrahydrofolate Dehydrogenase (NADP)/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Multifunctional Enzymes/antagonists & inhibitors , Multifunctional Enzymes/immunology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Primary Cell Culture , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/immunology , RNA, Small Interfering/genetics , RNA, Small Interfering/immunology , Signal Transduction , T-Lymphocytes, Cytotoxic/pathology , Tumor Burden , Tumor Escape , Uridine Diphosphate N-Acetylglucosamine/metabolism , Xenograft Model Antitumor Assays
11.
Oncogenesis ; 9(2): 21, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32060258

ABSTRACT

The protein O-GlcNAcylation catalysed by O-GlcNAc transferase (OGT) is tightly regulated by glucose availability. It is upregulated and essential for tumor cell proliferation under hypoxic conditions. However, the mechanism behind is still unclear. Here, we showed that the glycolytic regulator 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3), which also promotes cell cycle progression in the nucleus, was O-GlcNAcylated in response to hypoxia. The O-GlcNAcylation of PFKFB3 could compete phosphorylation by hypoxia-activated ERK at the same modification site Ser172. Phosphorylated PFKFB3 could interact with the protein G3BP2 and retain in the cytosol; this in turn led to the accumulation of hypoxia-induced-P27 in the nucleus resulting in the cell cycle arrest. Such a pathway was compromised by high level of PFKFB3 O-GlcNAcylation in tumor cells contributing to cell cycle progression. Consistently, the PFKFB3-Ser172 phosphorylation level inversely correlated with the OGT level in pancreatic cancer patients. Our findings uncovered an O-GlcNAcylation mediated mechanism to promote tumor cell proliferation under metabolic stress, linking the aberrant OGT activity to tumorigenesis in pancreatic cancer.

12.
Cancer Res ; 79(7): 1383-1397, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30683654

ABSTRACT

The metabolic activity of fumarase (FH) participates in gene transcription linking to tumor cell growth. However, whether this effect is implicated in lung cancer remains unclear. Here, we show TGFß induces p38-mediated FH phosphorylation at Thr 90, which leads to a FH/CSL (also known as RBP-Jκ)/p53 complex formation and FH accumulation at p21 promoter under concomitant activation of Notch signaling; in turn, FH inhibits histone H3 Lys 36 demethylation and thereby promotes p21 transcription and cell growth arrest. In addition, FH is massively phosphorylated at the Ser 46 by PAK4 in non-small cell lung cancer (NSCLC) cells, and PAK4-phosphorylated FH binds to 14-3-3, resulting in cytosolic detention of FH and prohibition of FH/CSL/p53 complex formation. Physiologically, FH Ser 46 phosphorylation promotes tumorigenesis through its suppressive effect on FH Thr 90 phosphorylation-mediated cell growth arrest in NSCLC cells and correlates with poor prognosis in patients with lung cancer. Our findings uncover an uncharacterized mechanism underlying the local effect of FH on TGFß-induced gene transcription, on which the inhibitory effect from PAK4 promotes tumorigenesis in lung cancer. SIGNIFICANCE: Fumarase counteracts CSL via its metabolic activity to facilitate TGFß-induced cell growth arrest, an effect largely blocked by PAK4-mediated phosphorylation of fumarase.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation/physiology , Fumarate Hydratase/metabolism , Lung Neoplasms/pathology , Lymphotoxin-alpha/physiology , p21-Activated Kinases/metabolism , 14-3-3 Proteins/metabolism , A549 Cells , Animals , Carcinogenesis , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/metabolism , F-Box Proteins/metabolism , Heterografts , Histones/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/metabolism , Lung Neoplasms/enzymology , Lung Neoplasms/metabolism , Lymphotoxin-alpha/antagonists & inhibitors , Male , Mice , Mice, Nude , Phosphorylation , Protein Binding
13.
Cancer Cell ; 35(1): 33-45.e6, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30645975

ABSTRACT

Tumor-derived extracellular vesicles (TEV) "educate" healthy cells to promote metastases. We found that melanoma TEV downregulated type I interferon (IFN) receptor and expression of IFN-inducible cholesterol 25-hydroxylase (CH25H). CH25H produces 25-hydroxycholesterol, which inhibited TEV uptake. Low CH25H levels in leukocytes from melanoma patients correlated with poor prognosis. Mice incapable of downregulating the IFN receptor and Ch25h were resistant to TEV uptake, TEV-induced pre-metastatic niche, and melanoma lung metastases; however, ablation of Ch25h reversed these phenotypes. An anti-hypertensive drug, reserpine, suppressed TEV uptake and disrupted TEV-induced formation of the pre-metastatic niche and melanoma lung metastases. These results suggest the importance of CH25H in defense against education of normal cells by TEV and argue for the use of reserpine in adjuvant melanoma therapy.


Subject(s)
Extracellular Vesicles/metabolism , Lung Neoplasms/secondary , Melanoma/pathology , Receptor, Interferon alpha-beta/metabolism , Steroid Hydroxylases/metabolism , Animals , Cell Line, Tumor , Disease Progression , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockout Techniques , Humans , Interferons/pharmacology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Melanoma/metabolism , Mice , Neoplasm Metastasis , Oxysterols/metabolism , Reserpine/administration & dosage , Reserpine/pharmacology , Steroid Hydroxylases/genetics , THP-1 Cells
14.
Mol Cell Oncol ; 5(4): e1363848, 2018.
Article in English | MEDLINE | ID: mdl-30250906

ABSTRACT

Our recent study shows that AMPK normally phosphorates fumarase (FH) at Ser75 under glucose deprivation, resulting in FH-ATF2 complex formation that facilitates transcription for cell growth arrest. Meanwhile, O-GlcNAc transferase can compete with AMPK to O-GlcNAcylate FH. In tumor cells, FH is highly O-GlcNAcylated and is proinhibited from AMPK-ATF2 signaling.

15.
Leuk Lymphoma ; 59(1): 171-177, 2018 01.
Article in English | MEDLINE | ID: mdl-28503979

ABSTRACT

Type I interferons (IFN) were widely used for leukemia treatment. These cytokines act on cell surface receptor consisting of the IFNAR1/2 chains to induce anti-tumorigenic effects. Given that levels of IFNAR1 can be regulated by phosphorylation-driven ubiquitination and degradation that undermines IFN signaling and anti-tumorigenic effects, we sought to determine the importance of IFNAR1 downregulation in progression of acute leukemia. Using knock-in mice deficient in downregulation of IFNAR1, we uncovered that IFNAR1 expression in stromal benign cells functions to protect against progression of leukemia. We discuss putative mechanisms of this regulation and potential of therapeutic targeting of IFNAR1 downregulation to treat leukemia.


Subject(s)
Gene Expression , Leukemia/genetics , Leukemia/pathology , Receptor, Interferon alpha-beta/genetics , Acute Disease , Animals , Bone Marrow Cells/metabolism , Cell Line, Tumor , Disease Models, Animal , Disease Progression , Fusion Proteins, bcr-abl/genetics , Leukemia/metabolism , Mice , Receptor, Interferon alpha-beta/metabolism
16.
Nat Cell Biol ; 19(7): 833-843, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28628081

ABSTRACT

Chromatin-associated fumarase (FH) affects histone methylation via its metabolic activity. However, whether this effect is involved in gene transcription remains to be clarified. In this study, we show that under glucose deprivation conditions, AMPK phosphorylates FH at Ser75, which in turn forms a complex with ATF2 and participates in promoter activation. FH-catalysed fumarate in promoter regions inhibits KDM2A demethylase activity, and thus maintains the H3K36me2 profile and facilitates gene expression for cell growth arrest. On the other hand, FH is found to be O-GlcNAcylated at the AMPK phosphorylation site; FH-ATF2-mediated downstream events are impeded by FH O-GlcNAcylation, especially in cancer cells that display robust O-GlcNAc transferase (OGT) activity. Consistently, the FH-Ser75 phosphorylation level inversely correlates with the OGT level and poor prognosis in pancreatic cancer patients. These findings uncover a previously uncharacterized mechanism underlying transcription regulation by FH and the linkage between dysregulated OGT activity and growth advantage of cancer cells under glucose deficiency.


Subject(s)
Cell Proliferation , Fumarate Hydratase/metabolism , Glucose/deficiency , Pancreatic Neoplasms/enzymology , AMP-Activated Protein Kinases/metabolism , Activating Transcription Factor 2/genetics , Activating Transcription Factor 2/metabolism , Animals , Cell Line, Tumor , DNA Methylation , F-Box Proteins/genetics , F-Box Proteins/metabolism , Gene Expression Regulation, Neoplastic , Glycosylation , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Male , Mice, Nude , Multiprotein Complexes , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Phosphorylation , Promoter Regions, Genetic , RNA Interference , Time Factors , Transcriptional Activation , Transfection , Tumor Burden
17.
Mol Cell ; 65(5): 917-931.e6, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28238651

ABSTRACT

Autophagy is crucial for maintaining cell homeostasis. However, the precise mechanism underlying autophagy initiation remains to be defined. Here, we demonstrate that glutamine deprivation and hypoxia result in inhibition of mTOR-mediated acetyl-transferase ARD1 S228 phosphorylation, leading to ARD1-dependent phosphoglycerate kinase 1 (PGK1) K388 acetylation and subsequent PGK1-mediated Beclin1 S30 phosphorylation. This phosphorylation enhances ATG14L-associated class III phosphatidylinositol 3-kinase VPS34 activity by increasing the binding of phosphatidylinositol to VPS34. ARD1-dependent PGK1 acetylation and PGK1-mediated Beclin1 S30 phosphorylation are required for glutamine deprivation- and hypoxia-induced autophagy and brain tumorigenesis. Furthermore, PGK1 K388 acetylation levels correlate with Beclin1 S30 phosphorylation levels and poor prognosis in glioblastoma patients. Our study unearths an important mechanism underlying cellular-stress-induced autophagy initiation in which the protein kinase activity of the metabolic enzyme PGK1 plays an instrumental role and reveals the significance of the mutual regulation of autophagy and cell metabolism in maintaining cell homeostasis.


Subject(s)
Autophagosomes/enzymology , Autophagy , Beclin-1/metabolism , Brain Neoplasms/enzymology , Glioblastoma/enzymology , Phosphoglycerate Kinase/metabolism , Acetylation , Animals , Autophagosomes/pathology , Beclin-1/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Class III Phosphatidylinositol 3-Kinases/genetics , Class III Phosphatidylinositol 3-Kinases/metabolism , Female , Glioblastoma/genetics , Glioblastoma/pathology , Glutamine/deficiency , HEK293 Cells , Humans , Mice, Nude , N-Terminal Acetyltransferase A/genetics , N-Terminal Acetyltransferase A/metabolism , N-Terminal Acetyltransferase E/genetics , N-Terminal Acetyltransferase E/metabolism , Phosphoglycerate Kinase/genetics , Phosphorylation , Protein Binding , RNA Interference , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Time Factors , Transfection , Tumor Burden , Tumor Hypoxia
18.
Cell Rep ; 15(1): 171-180, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-27052162

ABSTRACT

Oncogene activation induces DNA damage responses and cell senescence. We report a key role of type I interferons (IFNs) in oncogene-induced senescence. IFN signaling-deficient melanocytes expressing activated Braf do not exhibit senescence and develop aggressive melanomas. Restoration of IFN signaling in IFN-deficient melanoma cells induces senescence and suppresses melanoma progression. Additional data from human melanoma patients and mouse transplanted tumor models suggest the importance of non-cell-autonomous IFN signaling. Inactivation of the IFN pathway is mediated by the IFN receptor IFNAR1 downregulation that invariably occurs during melanoma development. Mice harboring an IFNAR1 mutant, which is partially resistant to downregulation, delay melanoma development, suppress metastatic disease, and better respond to BRAF or PD-1 inhibitors. These results suggest that IFN signaling is an important tumor-suppressive pathway that inhibits melanoma development and progression and argue for targeting IFNAR1 downregulation to prevent metastatic disease and improve the efficacy of molecularly target and immune-targeted melanoma therapies.


Subject(s)
Cellular Senescence , Melanoma/metabolism , Proto-Oncogene Proteins B-raf/genetics , Receptor, Interferon alpha-beta/metabolism , Signal Transduction , Adult , Aged , Aged, 80 and over , Animals , Cell Line, Tumor , Down-Regulation , Female , HEK293 Cells , Humans , Interferon Type I/metabolism , Male , Melanocytes/metabolism , Melanocytes/pathology , Melanoma/pathology , Mice , Mice, Inbred C57BL , Middle Aged , Mutation , Proto-Oncogene Proteins B-raf/metabolism , Receptor, Interferon alpha-beta/genetics
19.
Proc Natl Acad Sci U S A ; 112(50): 15420-5, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26627716

ABSTRACT

The great preclinical promise of the pancreatic endoplasmic reticulum kinase (PERK) inhibitors in neurodegenerative disorders and cancers is marred by pancreatic injury and diabetic syndrome observed in PERK knockout mice and humans lacking PERK function and suffering from Wolcott-Rallison syndrome. PERK mediates many of the unfolded protein response (UPR)-induced events, including degradation of the type 1 interferon (IFN) receptor IFNAR1 in vitro. Here we report that whole-body or pancreas-specific Perk ablation in mice leads to an increase in IFNAR1 protein levels and signaling in pancreatic tissues. Concurrent IFNAR1 deletion attenuated the loss of PERK-deficient exocrine and endocrine pancreatic tissues and prevented the development of diabetes. Experiments using pancreas-specific Perk knockouts, bone marrow transplantation, and cultured pancreatic islets demonstrated that stabilization of IFNAR1 and the ensuing increased IFN signaling in pancreatic tissues represents a major driver of injury triggered by Perk loss. Neutralization of IFNAR1 prevented pancreatic toxicity of PERK inhibitor, indicating that blocking the IFN pathway can mitigate human genetic disorders associated with PERK deficiency and help the clinical use of PERK inhibitors.


Subject(s)
Interferon Type I/metabolism , Pancreas/enzymology , Pancreas/pathology , Receptor, Interferon alpha-beta/metabolism , eIF-2 Kinase/antagonists & inhibitors , Animals , Apoptosis/drug effects , Caspase 3/metabolism , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Experimental/pathology , Down-Regulation/drug effects , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Enzyme Activation/drug effects , Fluorescent Antibody Technique , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Mice , Pancreas/drug effects , Protein Kinase Inhibitors/toxicity , Signal Transduction/drug effects , Unfolded Protein Response , Up-Regulation/drug effects , eIF-2 Kinase/metabolism
20.
Cancer Biol Ther ; 16(8): 1214-9, 2015.
Article in English | MEDLINE | ID: mdl-26046815

ABSTRACT

The major known function of cytokines that belong to type I interferons (IFN, including IFNα and IFNß) is to mount the defense against viruses. This function also protects the genetic information of host cells from alterations in the genome elicited by some of these viruses. Furthermore, recent studies demonstrated that IFN also restrict proliferation of damaged cells by inducing cell senescence. Here we investigated the subsequent role of IFN in elimination of the senescent cells. Our studies demonstrate that endogenous IFN produced by already senescent cells contribute to increased expression of the natural killer (NK) receptor ligands, including MIC-A and ULBP2. Furthermore, neutralization of endogenous IFN or genetic ablation of its receptor chain IFNAR1 compromises the recognition of senescent cells and their clearance in vitro and in vivo. We discuss the role of IFN in protecting the multi-cellular host from accumulation of damaged senescent cells and potential significance of this mechanism in human cancers.


Subject(s)
Cellular Senescence , Fibroblasts/pathology , Interferon Type I/physiology , Animals , Cells, Cultured , Cellular Senescence/drug effects , Fibroblasts/drug effects , GPI-Linked Proteins/genetics , Histocompatibility Antigens Class I/genetics , Humans , Intercellular Signaling Peptides and Proteins/genetics , Interferon Type I/pharmacology , Interferon-beta/immunology , Interferon-beta/metabolism , Interferon-beta/pharmacology , Mice, Inbred C57BL , Mice, Mutant Strains , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Progeria/pathology , Receptor, Interferon alpha-beta/genetics , Werner Syndrome/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...