Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 669: 126-136, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38713952

ABSTRACT

The shuttle effect and sluggish redox kinetics of polysulfides have hindered the development of lithium-sulfur batteries (LSBs) as premier energy storage devices. To address these issues, a high-entropy metal phosphide (NiCoMnFeCrP) was synthesized using the sol-gel method. NiCoMnFeCrP, with its rich metal species, exhibits strong synergistic effects and provides numerous catalytic active sites for the conversion of polysulfides. These active sites, possessing significant polarity, can bond with polysulfides. In situ ultraviolet-visible were conducted to monitor the dynamic changes in species and concentrations of polysulfides, validating the ability of NiCoMnFeCrP to facilitate the conversion of polysulfides. The batteries with the NiCoMnFeCrP catalyst as functional separators exhibited minimal capacity decay rates of 0.04 % and 0.23 % after 100 cycles at 0 °C and 60 °C, respectively. This indicates that the NiCoMnFeCrP catalyst possesses good thermal stability. Meanwhile, its area capacity can reach 4.78 mAh cm-2 at a high sulfur load of 4.54 mg cm-2. In conclusion, NiCoMnFeCrP achieves the objective of mitigating the shuttle effect and accelerating the kinetics of the redox reaction, thereby facilitating the commercialization of LSBs.

2.
Adv Sci (Weinh) ; 11(24): e2308955, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38647404

ABSTRACT

The adjustable structures and remarkable physicochemical properties of 2D monoelemental materials, such as silicene and germanene, have attracted significant attention in recent years. They can be transformed into silicane (SiH) and germanane (GeH) through covalent functionalization via hydrogen atom termination. However, synthesizing these materials with a scalable and low-cost fabrication process to achieve high-quality 2D SiH and GeH poses challenges. Herein, groundbreaking 2D SiH and GeH materials with varying compositions, specifically Si0.25Ge0.75H, Si0.50Ge0.50H, and Si0.75Ge0.25H, are prepared through a simple and efficient chemical exfoliation of their Zintl phases. These 2D materials offer significant advantages, including their large surface area, high mechanical flexibility, rapid electron mobility, and defect-rich loose-layered structures. Among these compositions, the Si0.50Ge0.50H electrode demonstrates the highest discharge capacity, reaching up to 1059 mAh g-1 after 60 cycles at a current density of 75 mA g-1. A comprehensive ex-situ electrochemical analysis is conducted to investigate the reaction mechanisms of lithiation/delithiation in Si0.50Ge0.50H. Subsequently, an initial assessment of the c-Li15(SixGe1- x)4 phase after lithiation and the a-Si0.50Ge0.50 phase after delithiation is presented. Hence, this study contributes crucial insights into the (de)lithiation reaction mechanisms within germanane-silicane alloys. Such understanding is pivotal for mastering promising materials that amalgamate the finest properties of silicon and germanium.

3.
Small ; : e2400315, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488741

ABSTRACT

Currently, a major target in the development of Na-ion batteries is the concurrent attainment of high-rate capacity and long cycling stability. Herein, an advanced Na-ion battery with high-rate capability and long cycle stability based on Li/Ti co-doped P2-type Na0.67 Mn0.67 Ni0.33 O2 , a host material with high-voltage zero-phase transition behavior and fast Na+ migration/conductivity during dynamic de-embedding process, is constructed. Experimental results and theoretical calculations reveal that the two-element doping strategy promotes a mutually reinforcing effect, which greatly facilitates the transfer capability of Na+ . The cation Ti4+ doping is a dominant high voltage, significantly elevating the operation voltage to 4.4 V. Meanwhile, doping Li+ shows the function in charge transfer, improving the rate performance and prolonging cycling lifespan. Consequently, the designed P2-Na0.75 Mn0.54 Ni0.27 Li0.14 Ti0.05 O2 cathode material exhibits discharge capacities of 129, 104, and 85 mAh g- 1 under high voltage of 4.4 V at 1, 10, and 20 C, respectively. More importantly, the full-cell delivers a high initial capacity of 198 mAh g-1 at 0.1 C (17.3 mA g-1 ) and a capacity retention of 73% at 5 C (865 mA g-1 ) after 1000 cycles, which is seldom witnessed in previous reports, emphasizing their potential applications in advanced energy storage.

4.
Adv Sci (Weinh) ; 11(2): e2306350, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37933980

ABSTRACT

Degradation and reprocessing of thermoset polymers have long been intractable challenges to meet a sustainable future. Star strategies via dynamic cross-linking hydrogen bonds and/or covalent bonds can afford reprocessable thermosets, but often at the cost of properties or even their functions. Herein, a simple strategy coined as hyperbranched dynamic crosslinking networks (HDCNs) toward in-practice engineering a petroleum-based epoxy thermoset into degradable, reconfigurable, and multifunctional vitrimer is provided. The special characteristics of HDCNs involve spatially topological crosslinks for solvent adaption and multi-dynamic linkages for reversible behaviors. The resulting vitrimer displays mild room-temperature degradation to dimethylacetamide and can realize the cycling of carbon fiber and epoxy powder from composite. Besides, they have supra toughness and high flexural modulus, high transparency as well as fire-retardancy surpassing their original thermoset. Notably, it is noted in a chance-following that ethanol molecule can induce the reconstruction of vitrimer network by ester-exchange, converting a stiff vitrimer into elastomeric feature, and such material records an ultrahigh modulus (5.45 GPa) at -150 °C for their ultralow-temperature condition uses. This is shaping up to be a potentially sustainable advanced material to address the post-consumer thermoset waste, and also provide a newly crosslinked mode for the designs of high-performance polymer.

5.
ACS Appl Mater Interfaces ; 15(39): 45915-45925, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37737741

ABSTRACT

Li-S batteries have drawn a lot of attention for their high theoretical specific capacity and significant economic benefits. However, the shuttle effect of polysulfides prevents them from being used widely. To tackle this difficulty, a heterogeneous structure based on tubular carbon nitride with evenly dispersed molybdenum dioxide nanoparticles (MoO2/t-C3N4) as the S host is constructed in this work. As a polar material with a large specific surface area, MoO2/t-C3N4 has a strong anchoring effect on polysulfide. Additionally, the heterogeneous material has excellent bidirectional catalytic ability for the redox process of S species based on the action of the built-in electric field formed by electron directional transfer. Not only does it improve the reaction kinetics of the redox process of the polysulfides but it also prevents polysulfides from accumulating on the surface of the modified material and deactivating it, further improving the utilization of the active material. Thus, MoO2/t-C3N4/S shows the high initial-discharge specific capacity of 812.7 mAh g-1 at the current density of 5C, and the Coulombic efficiency is maintained at more than 95% after 400 charge/discharge cycles. Moreover, MoO2/t-C3N4/S achieved a capacity retention of 89% after 100 cycles at the current density of 0.1C under the high S loading. Therefore, the research results of this work provide a trustworthy reference for the future commercial application of Li-S batteries.

6.
ACS Appl Mater Interfaces ; 15(6): 8190-8199, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36734587

ABSTRACT

Benefiting from the advanced solid-state electrolytes (SSEs), conventional cathodes have been widely applied in all-solid-state lithium batteries (ASSLBs). However, Li-rich Mn-based (LRM) cathodes, which possess enhanced discharge capacities beyond 250 mA h g-1, have not yet been studied in ASSLBs. In this work, the practical application of LRM cathodes in ASSLBs using a high-voltage-stability halide SSE (Li3InCl6, LIC) is reported for the first time. Furthermore, we decipher that the active oxygen released from LRM cathodes at a high operation voltage seriously oxidizes the LIC electrolytes, thus resulting in the large interfacial resistance between cathodes and electrolytes and hindering their industrialized application in ASSLBs. Therefore, surface chemistry engineering of LRM cathodes with an ionic conductive coating material of LiNbO3 (LNO) is employed to stabilize the LRM/LIC interface. Consequently, the LRM-based ASSLBs deliver a high specific capacity of 221 mA h g-1 at 0.1 C and a decent cycle life of 100 cycles. This contribution gives insights into studying the interfacial issues between LRM cathodes and halide electrolytes and sheds light on the application of LRM cathode materials in ASSLBs.

7.
Adv Mater ; 35(5): e2207234, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36461688

ABSTRACT

Employing lithium-rich layered oxide (LLO) as the cathode of all-solid-state batteries (ASSBs) is highly desired for realizing high energy density. However, the poor kinetics of LLO, caused by its low electronic conductivity and significant oxygen-redox-induced structural degradation, has impeded its application in ASSBs. Here, the charge transfer kinetics of LLO is enhanced by constructing high-efficiency electron transport networks within solid-state electrodes, which considerably minimizes electron transfer resistance. In addition, an infusion-plus-coating strategy is introduced to stabilize the lattice oxygen of LLO, successfully suppressing the interfacial oxidation of solid electrolyte (Li3 InCl6 ) and structural degradation of LLO. As a result, LLO-based ASSBs exhibit a high discharge capacity of 230.7 mAh g-1 at 0.1 C and ultra-long cycle stability over 400 cycles. This work provides an in-depth understanding of the kinetics of LLO in solid-state electrodes, and affords a practically feasible strategy to obtain high-energy-density ASSBs.

8.
ACS Appl Mater Interfaces ; 11(43): 40022-40033, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31577125

ABSTRACT

The Ni-rich layered oxides are considered as a candidate of next-generation cathode materials for high energy density lithium-ion batteries; however, the finite cyclic life and poor thermostability impede their practical applications. There is often a tradeoff between structure stability and high capacity because the intrinsical instability of oxygen framework will lead to the structural transformation of Ni-rich materials. Because of the strong binding energy between the Te atom and O atom, herein a new technology of surface tellurium (Te) doping in the Ni-rich layered oxide (LiNi0.88Co0.09Al0.03O2) is proposed to settle the above predicament. Based on density function theory calculations and experiment analysis, it has been confirmed that the doped Te6+ ions are positioned in the TM layer near the oxide surface, which can constrain the TM-O slabs by strong Te-O bonds and prevent oxygen release from the surface, thus enhancing the stability of the lattice framework in deep delithium (>4.3 V). Especially, 1 wt % Te doping (Te 1%-NCA) shows the superiority in performance improvement. Furthermore, the reversibility of H2-H3 phase transition is also improved to relieve effectively the capacity decline and the structural transformations at extended cycling, which can facilitate the fast Li+ diffusion kinetic. Consequently, Te 1%-NCA cathode exhibits the improved cycling stability even at high voltages (4.5 and 4.7 V), good rate capability (159.2 mA h g-1 at 10 C), and high thermal stability (the peak temperature of 258 °C). Therefore, the appropriate Te surface doping provides a significant exploration for industrial development of the high-performance Ni-rich cathode materials with high capacity and structural stability.

9.
ACS Appl Mater Interfaces ; 11(18): 16556-16566, 2019 May 08.
Article in English | MEDLINE | ID: mdl-30995007

ABSTRACT

The LiNi1- x- yCo xAl yO2 (NCA)-layered materials are regarded as a research focus of power lithium-ion batteries (LIBs) because of their high capacity. However, NCA materials are still up against the defects of cation mixing and surface erosion of electrolytes. Herein, a novel design strategy is proposed to obtain a heterostructured cathode material with a high-capacity LiNi0.88Co0.09Al0.03O2 layer ( R3̅ m) core and a stable LiNi0.5Mn1.5O4-like spinel ( Fd3̅ m) shell, which is prepared through spontaneous redox reaction of the precursor with KMnO4 in an alkaline solution and subsequent calcination procedure. The structure, morphology, element distribution, and electrochemical performances of the as-prepared NCA are studied by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical techniques. The results show that the LiNi0.5Mn1.5O4-like spinel ( Fd3̅ m) shell layer with a robust cubic close-packed crystal structure is uniformly adhered to the surface of the NCA and can availably suppress the side reactions with the electrolyte and surface-phase transformation, which will facilitate insertion/extraction of Li+ ions during cycling. Benefiting from the enhanced structural stability and improved kinetics, the heterostructured NCA delivers a better cycling performance. The discharge specific capacity is as high as 153.7 mA h g-1 at 10 C, and even at high charge voltage of 4.5 V, the capacity retention can still increase 11% at 1 C (200 mA g-1) after 100 cycles. Besides, the material exhibits a prominent thermal stability of 248 °C at 4.3 V. Therefore, this novel structure design strategy can contribute to the development and commercialization of high-performance cathode materials for power LIBs.

10.
ACS Appl Mater Interfaces ; 10(19): 16561-16571, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29697250

ABSTRACT

Li-rich layered oxides (LLOs) with high specific capacities are favorable cathode materials with high-energy density. Unfortunately, the drawbacks of LLOs such as oxygen release, low conductivity, and depressed kinetics for lithium ion transport during cycling can affect the safety and rate capability. Moreover, they suffer severe capacity and voltage fading, which are major challenges for the commercializing development. To cure these issues, herein, the synthesis of high-performance antimony-doped LLO nanofibers by an electrospinning process is put forward. On the basis of the combination of theoretical analyses and experimental approaches, it can be found that the one-dimensional porous micro-/nanomorphology is in favor of lithium-ion diffusion, and the antimony doping can expand the layered phase lattice and further improve the lithium ion diffusion coefficient. Moreover, the antimony doping can decrease the band gap and contribute extra electrons to O within the Li2MnO3 phase, thereby enhancing electronic conductivity and stabilizing lattice oxygen. Benefitting from the unique architecture, reformative electronic structure, and enhanced kinetics, the antimony-doped LLO nanofibers possess a high reversible capacity (272.8 mA h g-1) and initial coulombic efficiency (87.8%) at 0.1 C. Moreover, the antimony-doped LLO nanofibers show excellent cycling performance, rate capability, and suppressed voltage fading. The capacity retention can reach 86.9% after 200 cycles at 1 C, and even cycling at a high rate of 10 C, a capacity of 172.3 mA h g-1 can still be obtained. The favorable results can assist in developing the LLO material with outstanding electrochemical properties.

11.
ACS Appl Mater Interfaces ; 9(47): 41210-41223, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29115815

ABSTRACT

Lithium-rich oxide material has been considered as an attractive candidate for high-energy cathode for lithium-ion batteries (LIBs). However, the practical applications are still hindered due to its low initial reversible capacity, severe voltage decaying, and unsatisfactory rate capability. Among all, the voltage decaying is a serious barrier that results in a large decrease of energy density during long-term cycling. To overcome these issues, herein, an efficient strategy of fabricating lithium-rich oxide nanowires with spinel/layered heterostructure is proposed. Structural characterizations verify that the spinel/layered heterostructured nanowires are a self-assembly of a lot of nanoparticles, and the Li4Mn5O12 spinel phase is embedded inside the layered structure. When the material is used as cathode of LIBs, the spinel/layered heterostructured nanowires can display an extremely high invertible capacity of 290.1 mA h g-1 at 0.1 C and suppressive voltage fading. Moreover, it exhibits a favorable cycling stability with capacity retention of 94.4% after charging/discharging at 0.5 C for 200 cycles and it shows an extraordinary rate capability (183.9 mA h g-1, 10 C). The remarkable electrochemical properties can be connected with the spinel/layered heterostructure, which is in favor of Li+ transport kinetics and enhancing structural stability during the cyclic process.

12.
ACS Appl Mater Interfaces ; 9(30): 25358-25368, 2017 Aug 02.
Article in English | MEDLINE | ID: mdl-28696655

ABSTRACT

The controllable morphology and size Li-rich Mn-based layered oxide Li1.2Ni0.13Co0.13Mn0.54O2 with micro/nano structure is successfully prepared through a simple coprecipitation route followed by subsequent annealing treatment process. By rationally regulating and controlling the volume ratio of ethylene glycol (EG) in hydroalcoholic solution, the morphology and size of the final products can be reasonably designed and tailored from rod-like to olive-like, and further evolved into shuttle-like with the assistance of surfactant. Further, the structures and electrochemical properties of the Li-rich layered oxide with various morphology and size are systematically investigated. The galvanostatic testing demonstrates that the electrochemical performances of lithium ion batteries (LIBs) are highly dependent on the morphology and size of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials. In particular, the olive-like morphology cathode material with suitable size exhibits much better electrochemical performances compared with the other two cathode materials in terms of initial reversible capacity (297.0 mAh g-1) and cycle performance (95.4% capacity retention after 100 cycles at 0.5 C), as well as rate capacity (142.8 mAh g-1 at 10 C). The excellent electrochemical performances of the as-prepared materials could be related to the synergistic effect of well-regulated morphology and appropriate size as well as their micro/nano structure.

13.
Sci Rep ; 5: 8403, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25672573

ABSTRACT

Homogeneous lithium-rich layered-spinel 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2 microspheres (~1 µm) are successfully prepared by a solvothermal method and subsequent high-temperature calcinations process. The effects of temperature on the structure and performance of the as-prepared cathode material are systemically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), galvanostatical charge/discharge and electrochemical impedance spectra. The results show that a spinel Li4Mn5O12 component can be controllably introduced into the lithium-rich layered material at 750°C. Besides, it has been found that the obtained layered-spinel cathode material represents excellent electrochemical characteristics. For example, it can deliver a high initial discharge capacity of 289.6 mAh g(-1) between 2.0 V and 4.6 V at a rate of 0.1 C at room temperature, and a discharge capacity of 144.9 mAh g(-1) at 5 C and 122.8 mAh g(-1) even at 10 C. In addition, the retention of the capacity is still as high as 88% after 200 cycles, while only 79.9% for the single-phase layered material. The excellent electrochemical performance of the as-prepared cathode material can probably be attributed to the hybrid structures combining a fast Li-ion diffusion rate of 3D spinel Li4Mn5O12 phase and a high capacity of the layered Li-Mn-Ni-Co-O component.

SELECTION OF CITATIONS
SEARCH DETAIL
...