Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Sci Technol Adv Mater ; 24(1): 2156256, 2023.
Article in English | MEDLINE | ID: mdl-36632347

ABSTRACT

For changing environmental circumstances, interactive structural color (SC) observation is a promising strategy to store and express external information. SCs based on self-assembled block copolymer (BCP) photonic crystals have been a research focus due to their facile and diverse nanostructures relying on the volume ratio of blocks. Their unique nano-architectonics can reflect incident light due to constructive interference of the two different dielectric constituents. Their excellent ability to change nano-architectonics in response to external stimuli (i.e. humidity, temperature, pH, and mechanical force) allows for a programmable and stimuli-interactive BCP SC display. In this review, recent advances in programmable and stimuli-interactive SC displays with the 1-dimensional self-assembled BCP nano-architectonics are comprehensively discussed. First, this review focuses on the development of programmable BCP SCs that can store various information. Second, stimuli-interactive BCP SCs capable of responding reversibly to external stimuli are also addressed. Particularly, reversible BCP SC changes are suitable for rewritable displays and emerging human-interactive BCP SC displays that detect various human information through changes in electric signals with the simultaneous alteration of the BCP SCs. Based on previously reported literature, the current challenges in this research field are further discussed, and the perspective for future development is presented in terms of material, nano-architectonics, and process.

2.
Adv Mater ; 35(43): e2204964, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36095261

ABSTRACT

The development of human-interactive sensing displays (HISDs) that simultaneously detect and visualize stimuli is important for numerous cutting-edge human-machine interface technologies. Therefore, innovative device platforms with optimized architectures of HISDs combined with novel high-performance sensing and display materials are demonstrated. This study comprehensively reviews the recent advances in HISDs, particularly the device architectures that enable scaling-down and simplifying the HISD, as well as material designs capable of directly visualizing input information received by various sensors. Various HISD platforms for integrating sensors and displays are described. HISDs consist of a sensor and display connected through a microprocessor, and attempts to assemble the two devices by eliminating the microprocessor are detailed. Single-device HISD technologies are highlighted in which input stimuli acquired by sensory components are directly visualized with various optical components, such as electroluminescence, mechanoluminescence and structural color. The review forecasts future HISD technologies that demand the development of materials with molecular-level synthetic precision that enables simultaneous sensing and visualization. Furthermore, emerging HISDs combined with artificial intelligence technologies and those enabling simultaneous detection and visualization of extrasensory information are discussed.

3.
IUCrJ ; 8(Pt 6): 1018-1023, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34804553

ABSTRACT

AA h boron nitride (BN) crystal, assigned to an orthorhombic space group (No. 31, Pm21), is reported here. This new AA h BN crystal exhibits a 'linear' morphology for high-resolution transmission electron microscopy (HRTEM) and a (non-hexagonal) 'diagonal' electron-diffraction pattern, which have been experimentally demonstrated in this article. It is also demonstrated that this new crystal is the basic structure of multi-walled BN nanotubes (BNNTs) existing in the form of a helix. The helical AA h BNNTs exist in a metastable phase owing to 〈200〉 texture growth of the orthorhombic crystal, where the energy is ∼15 meV higher than that of stable AB or AA' BN. It is shown that the typical scanning electron microscope 'fluffy cotton-like' morphology of BNNTs is due to secondary growth of diverse BN sheets (including mono-layers) on incoherently scrolled wall strands of BNNTs, providing further evidence for the helical structure with HRTEM evidence for a left-handed helix.

4.
Mater Horiz ; 8(11): 3009-3042, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34623368

ABSTRACT

Rational design of structures for regulating the thermal conductivities (κ) of materials is critical to many components and products employed in electrical, electronic, energy, construction, aerospace, and medical applications. As such, considerable efforts have been devoted to developing polymer composites with tailored conducting filler architectures and thermal conduits for highly improved κ. This paper is dedicated to overviewing recent advances in this area to offer perspectives for the next level of future development. The limitations of conventional particulate-filled composites and the issue of percolation are discussed. In view of different directions of heat dissipation in polymer composites for different end applications, various approaches for designing the micro- and macroscopic structures of thermally conductive networks in the polymer matrix are highlighted. Methodological approaches devised to significantly ameliorate thermal conduction are categorized with respect to the pathways of heat dissipation. Future prospects for the development of thermally conductive polymer composites with modulated thermal conduction pathways are highlighted.

5.
Adv Healthc Mater ; 10(14): e2100469, 2021 07.
Article in English | MEDLINE | ID: mdl-34028997

ABSTRACT

The development of electrically responsive sensors that interact directly with human skin and at the same time produce a visual indication of the temperature is in great demand. Here, we report a highly sensitive electronic skin (E-skin) sensor that measures and visualizes skin temperature simultaneously using a biocompatible hydrogel displaying thermoresponsive transparency and resistivity resulting from a temperature dependence of the strength of the hydrogen bonding between its components. This thermoresponsive hydrogel (TRH) showed a temperature dependence of not only the proton conductivity but also of its transmittance of light through a change in polymer conformation. We were able to use our TRH temperature sensor (TRH-TS) to measure temperature in a wide range of temperatures based on a change in its intrinsic resistivity (-0.0289 °C-1 ) and to visualize the temperature due to its thermoresponsive transmittance (from 7% to 96%). The TRH-TS exhibited high reliability upon multiple cycles of heating and cooling. The on-skin TRH-TS patch is also shown to successfully produce changes in its impedance and optical transparency as a result of changes in skin temperature during cardiovascular exercise. This work has shown that our biocompatible TRH-TS is potentially suitable as wearable E-skin for various emerging flexible healthcare monitoring applications.


Subject(s)
Hydrogels , Wearable Electronic Devices , Electric Conductivity , Humans , Reproducibility of Results , Skin Temperature , Temperature
6.
ACS Nano ; 15(5): 8940-8952, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33983015

ABSTRACT

MXenes (Ti3C2TX) are two-dimensional transition-metal carbides and carbonitrides with high conductivity and optical transparency. However, transparent MXene electrodes with high environmental stability suitable for various flexible organic electronic devices have rarely been demonstrated. By laminating a thin polymer film onto a solution-processed MXene layer to protect the MXene film from harsh environmental conditions, we present transparent and flexible MXene electronic devices. A thin polymer layer spin-coated onto a transparent MXene electrode provides environmental stability even under air exposure longer than 7 d at high temperatures (up to 70 °C) and humidity levels (up to 50%) without degrading the transparency of the electrode. The resulting polymer-laminated (PL) MXene electrode facilitates the development of a variety of field-driven photoelectronic devices by exploiting the electric field exerted between the MXene layer and the counter electrode through the insulating polymer. Field-induced electroluminescent displays, based on both organic and inorganic phosphors, with PL-MXene electrodes are demonstrated with high transparency and mechanical flexibility. Furthermore, our PL-MXene electrode exhibits high versatility through successful implementation in capacitive-type pressure sensors and triboelectric nanogenerators, resulting in field-driven sensing and energy harvesting electronic devices with excellent operation reliability.

7.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 77(Pt 2): 260-265, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33843734

ABSTRACT

Hexagonal boron nitride (h-BN) has been generally interpreted as having an AA stacking sequence. Evidence is presented in this article indicating that typical commercial h-BN platelets (∼10-500 nm in thickness) exhibit stacks of parallel nanosheets (∼10 nm in thickness) predominantly in the AB sequence. The AB-stacked nanosheet occurs as a metastable phase of h-BN resulting from the preferred texture and lateral growth of armchair (110) planes. It appears as an independent nanosheet or unit for h-BN platelets. The analysis is supported by simulation of thin AB films (2-20 layers), which explains the unique X-ray diffraction pattern of h-BN. With this analysis and the role of pressure in commercial high-pressure high-temperature sintering (driving nucleation and parallelizing the in-plane crystalline growth of the nuclei), a growth mechanism is proposed for 2D h-BN (on a substrate) as `substrate-induced 2D growth', where the substrate plays the role of pressure.

8.
Materials (Basel) ; 14(3)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499308

ABSTRACT

In this study, Bi0.5Sb1.5Te3.0 (BST) nanoparticles (NPs) with high crystallinities were synthesized via a mechanochemical process (MCP). X-ray diffraction (XRD), and Raman and X-ray photoelectron spectroscopy (XPS) spectra of the BST NPs showed that the Bi, Sb, and Te powders successfully formed BiSbTe phase and transmission electron microscopy (TEM) images, verifying the high crystallinity and smaller size, albeit agglomerated. The as-synthesized BST NPs with agglomerated clusters were ground into smaller sizes of approximately 41.8 nm with uniform distribution through a simple wet-milling process during 7 days. The thermal conduction behaviors of bulk alloys fabricated by spark plasma sintering (SPS) of the BST NPs were studied by comparing those of samples fabricated from as-synthesized BST NPs and a BST ingot. The thermal conductivities (κ) of the BST nanocomposites were significantly reduced by introducing BST NPs with smaller grain sizes and finer distributions in the temperature range from 300 to 500 K. The BST nanocomposites fabricated from wet-milled BST NPs offered ultralow κ values of 0.84 W m-1 K-1 at approximately 398 K.

9.
Nanomaterials (Basel) ; 11(1)2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33375191

ABSTRACT

Electroactive polymers with high dielectric constants and low moduli can offer fast responses and large electromechanical strain under a relatively low electric field with regard to theoretical driving forces of electrostriction and electrostatic force. However, the conventional electroactive polymers, including silicone rubbers and acrylic polymers, have shown low dielectric constants (ca. < 4) because of their intrinsic limitation, although they have lower moduli (ca. < 1 MPa) than inorganics. To this end, we proposed the high dielectric PVDF terpolymer blends (PVTC-PTM) including poly(vinylidene fluoride-trifluoroethylene-chlorofluoro-ethylene) (P(VDF-TrFE-CFE), PVTC) as a matrix and micelle structured poly(3-hexylthiophene)-b-poly(methyl methacrylate) (P3HT-b-PMMA, PTM) as a conducting filler. The dielectric constant of PVTC-PTM dramatically increased up to 116.8 at 100 Hz despite adding only 2 wt% of the polymer-type filler (PTM). The compatibility and crystalline properties of the PVTC-PTM blends were examined by microscopic, thermal, and X-ray studies. The PVTC-PTM showed more compatible blends than those of the P3HT homopolymer filler (PT) and led to higher crystallinity and smaller crystal grain size relative to those of neat PVTC and PVTC with the PT filler (PVTC-PT). Those by the PVTC-PTM blends can beneficially affect the high-performance electromechanical properties compared to those by the neat PVTC and the PVTC-PT blend. The electromechanical strain of the PVTC-PTM with 2 wt% PTM (PVTC-PTM2) showed ca. 2-fold enhancement (0.44% transverse strain at 30 Vpp µm-1) relative to that of PVTC. We found that the more significant electromechanical performance of the PVTC-PTM blend than the PVTC was predominantly due to the electrostrictive force rather than electrostatic force. We believe that the acquired PVTC-PTM blends are great candidates to achieve the high-performance electromechanical strain and take all benefits derived from the all-organic system, including high electrical breakdown strength, processibility, dielectrics, and large strain, which are largely different from the organic-inorganic hybrid nanocomposite systems.

10.
Materials (Basel) ; 13(23)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260743

ABSTRACT

We report a flame retardant epoxy nanocomposite reinforced with 9,10-dihydro-9-oxa-10-phosphaphenantrene-10-oxide (DOPO)-tethered SiO2 (DOPO-t-SiO2) hybrid nanoparticles (NPs). The DOPO-t-SiO2 NPs were successfully synthesized through surface treatment of SiO2 NPs with (3-glycidyloxypropyl)trimethoxysilane (GPTMS), followed by a click reaction between GPTMS on SiO2 and DOPO. The epoxy nanocomposites with DOPO-t-SiO2 NPs as multifunctional additive exhibited not only high flexural strength and fracture toughness but also excellent flame retardant properties and thermal stability, compared to those of pristine epoxy and epoxy nanocomposites with a single additive of SiO2 or DOPO, respectively. Our approach allows a facile, yet effective strategy to synthesize a functional hybrid additive for developing flame retardant nanocomposites.

11.
Sci Adv ; 6(42)2020 10.
Article in English | MEDLINE | ID: mdl-33067233

ABSTRACT

"Living" cell sheets or bioelectronic chips have great potentials to improve the quality of diagnostics and therapies. However, handling these thin and delicate materials remains a grand challenge because the external force applied for gripping and releasing can easily deform or damage the materials. This study presents a soft manipulator that can manipulate and transport cell/tissue sheets and ultrathin wearable biosensing devices seamlessly by recapitulating how a cephalopod's suction cup works. The soft manipulator consists of an ultrafast thermo-responsive, microchanneled hydrogel layer with tissue-like softness and an electric heater layer. The electric current to the manipulator drives microchannels of the gel to shrink/expand and results in a pressure change through the microchannels. The manipulator can lift/detach an object within 10 s and can be used repeatedly over 50 times. This soft manipulator would be highly useful for safe and reliable assembly and implantation of therapeutic cell/tissue sheets and biosensing devices.

12.
Adv Sci (Weinh) ; 6(13): 1802351, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31380180

ABSTRACT

In addition to the demand for stimuli-responsive sensors that can detect various vital signals in epidermal skin, the development of electronic skin displays that quantitatively detect and visualize various epidermal stimuli such as the temperature, sweat gland activity, and conductance simultaneously are of significant interest for emerging human-interactive electronics used in health monitoring. Herein, a novel interactive skin display with epidermal stimuli electrode (ISDEE) allowing for the simultaneous sensing and display of multiple epidermal stimuli on a single device is presented. It is based on a simple two-layer architecture on a topographically patterned elastomeric polymer composite with light-emitting inorganic phosphors, upon which two electrodes are placed with a certain parallel gap. The ISDEE is directly mounted on human skin, which by itself serves as a field-responsive floating electrode of the display operating under an alternating current (AC). The AC field exerted on the epidermal skin layer depends on the conductance of the skin, which can be modulated based on a variety of physiological skin factors, such as the temperature, sweat gland activity, and pressure. Conductance-dependent field-induced electroluminescence is achieved, giving rise to an on-hand sensing display platform where a variety of human information can be directly sensed and visualized.

13.
ACS Nano ; 13(6): 6835-6844, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31117379

ABSTRACT

Prior to the advent of the next-generation heater for wearable/on-body electronic devices, various properties are required, including conductivity, transparency, mechanical reliability, and conformability. Expansion to two-dimensional (2D) structure of metallic nanowires based on network- and mesh-type geometries has been widely exploited for realizing these heaters. However, the routes led to many drawbacks such as the low-density cross-bar linking, self-aggregation of wire, and high junction resistance. Although 2D carbon nanomaterials such as graphene and reduced graphene oxide (rGO) have shown their potentials for the purpose, CVD-grown graphene with sufficiently high conductivity was limited due to its poor processability for large-area applications, while rGO fabricated with a complex reduction process involving the use of toxic chemicals suffered from a low electrical conductivity. In this study, we demonstrate a simple and robust process, utilizing electrostatic assembling of negatively charged MXene flakes on a positively treated surface of substrate, for fabricating a metal-like 2D MXene thin film heater (TFH). Our TFH showed a high optical property (>65%), low sheet resistance (215 Ω/sq), fast electrothermal response (within dozens of seconds) with an intrinsically high electrical conductivity, and mechanical flexibility (up to 180° bending). Its capability for forming a firm and stable ionic-type interface with a counterpart surface allows us to develop a shape-adaptable and patchable thread heater (TH) that can be shaped on diverse substrates even under harsh conditions of conventional sewing or weaving processes. This work suggests that our shape-adaptable MXene heaters are potentially suitable not only for wearable devices for local heating and defrosting but also for a variety of emerging applications of soft actuators and wearable/flexible healthcare monitoring and thermotherapy.

14.
Sci Technol Adv Mater ; 20(1): 35-41, 2019.
Article in English | MEDLINE | ID: mdl-30719184

ABSTRACT

We demonstrate high-performance down-conversion microlens array (DC-MLA) films for white organic light-emitting diodes (OLEDs). The DC-MLA films are readily fabricated by an imprinting method based on breath figure patterns, which are directly formed on the polymer substrate with a novel concept. The DC-MLA films result in high-quality white light as well as enhanced light outcoupling efficiency for white OLEDs. The external quantum efficiency and power efficiency of OLEDs with DC-MLA films are increased by a factor of 1.35 and 1.86, respectively, compared to OLEDs without outcoupling films. Moreover, the white OLEDs with DC-MLA films achieve a high color-rendering index of 84.3. It is anticipated that the novel DC-MLA films fabricated by the simple imprinting process with breath figure patterns can contribute to the development of efficient white OLEDs.

15.
ACS Appl Mater Interfaces ; 10(16): 13757-13766, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29605992

ABSTRACT

Simultaneous sensing and visualization of pressure provides a useful platform to obtain information about a pressurizing object, but the fabrication of such interactive displays at the single-device level remains challenging. Here, we present a pressure responsive electroluminescent (EL) display that allows for both sensing and visualization of pressure. Our device is based on a two-terminal capacitor with six constituent layers: top electrode/insulator/hole injection layer/emissive layer/electron transport layer/bottom electrode. Light emission upon exposure to an alternating current field between two electrodes is controlled by the capacitance change of the insulator arising from the pressure applied on top. Besides capacitive pressure sensing, our EL display allows for direct visualization of the static and dynamic information of position, shape, and size of a pressurizing object on a single-device platform. Monitoring the pressurized area of an elastomeric hemisphere on a device by EL enables quantitative estimation of the Young's modulus of the elastomer, offering a new and facile characterization method for the mechanical properties of soft materials.

16.
J Hazard Mater ; 342: 51-57, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-28822249

ABSTRACT

This paper reports the recycling of flexible printed circuit board (FPCB) waste through carbonization of polyimide by dual pyrolysis processes. The organic matter was recovered as pyrolyzed oil at low temperatures, while valuable metals and polyimide-derived carbon were effectively recovered through secondary high temperature pyrolysis. The major component of organics extracted from FPCB waste comprised of epoxy resins were identified as pyrolysis oils containing bisphenol-A. The valuable metals (Cu, Ni, Ag, Sn, Au, Pd) in waste FPCB were recovered as granular shape and quantitatively analyzed via ICP-OES. In attempt to produce carbonaceous material with increased degree of graphitization at low heat-treatment conditions, the catalytic effect of transition metals within FPCB waste was investigated for the efficient carbonization of polyimide films. The morphology of the carbon powder was observed by scanning electron microscopy and graphitic carbonization was investigated with X-ray analysis. The protocols outlined in this study may allow for propitious opportunities to salvage both organic and inorganic materials from FPCB waste products for a sustainable future.

17.
Nat Commun ; 8(1): 721, 2017 09 28.
Article in English | MEDLINE | ID: mdl-28959006

ABSTRACT

Designing topographic clusters is of significant interest, yet it remains challenging as they often lack mobility or deformability. Here we exploit the huge volumetric expansion (up to 3000%) of a new type of building block, thermally expandable microbombs. They consist of a viscoelastic polymeric shell and a volatile gas core, which, within structural confinement, create micro-clusters via inverse jamming and topographical close-packing. Upon heating, microbombs anchored in rigid confinement underwent balloon-like blowing up, allowing for dense clusters via soft interplay between viscoelastic shells. Importantly, the confinement is unyielding against the internal pressure of the microbombs, thereby enabling self-assembled clusters, which can be coupled with topographic inscription to introduce structural hierarchy on the clusters. Our strategy provides densely packed yet ultralight clusters with a variety of complex shapes, cleavages, curvatures, and hierarchy. In turn, these clusters will enrich our ability to explore the assemblies of the ever-increasing range of microparticle systems.Self-assembled systems are normally composed of incompressible building blocks, which constrain their space filling efficiency. Yu et al. show programmable, densely packed clusters using thermally expandable soft microparticles, whereby the self-assembling process is realized via a jamming transition.

18.
Macromol Rapid Commun ; 38(19)2017 Oct.
Article in English | MEDLINE | ID: mdl-28833812

ABSTRACT

Surface wrinkling is a promising route to control the mechanical, electrical, and optical properties of materials in a wide range of applications. However, previous artificial wrinkles are restricted to single or random orientation and lacks selectivity. To address this challenge, this study presents multidirectional wrinkle patterns with high selectivity and orientation through sequential uniaxial strain with conformal polymeric shadow masks. The conformal but nontraceable polymeric stencil with microapertures are adhered to a flat substrate prior to oxidation, which forms discrete and parallel wrinkles in confined domains without any contamination. By fully investigating the process, this study displays compound topography of wrinkles consisting of wrinkle islands and surrounding secondary wrinkles on the same surface. With this topography, various diffusion properties are presented: from semi-transparent yet diffusive films to multidirectional diffusive films, which will be available for new types of optical diffuser applications.


Subject(s)
Polymers/chemistry , Skin Aging/physiology , Skin , Humans , Microscopy, Electron, Scanning , Molecular Conformation , Skin/chemistry , Skin/ultrastructure , Surface Properties
19.
Nanoscale ; 9(36): 13432-13440, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28696464

ABSTRACT

Lightweight dual-functional materials with high EMI shielding performance and thermal conductivity are of great importance in modern cutting-edge applications, such as mobile electronics, automotive, aerospace, and military. Unfortunately, a clear material solution has not emerged yet. Herein, we demonstrate a simple and effective way to fabricate lightweight metal-based polymer composites with dual-functional ability of excellent EMI shielding effectiveness and thermal conductivity using expandable polymer bead-templated Cu hollow beads. The low-density Cu hollow beads (ρ ∼ 0.44 g cm-3) were fabricated through electroless plating of Cu on the expanded polymer beads with ultralow density (ρ ∼ 0.02 g cm-3). The resulting composites that formed a continuous 3D Cu network with a very small Cu content (∼9.8 vol%) exhibited excellent EMI shielding (110.7 dB at 7 GHz) and thermal conductivity (7.0 W m-1 K-1) with isotropic features. Moreover, the densities of the composites are tunable from 1.28 to 0.59 g cm-3 in accordance with the purpose of their applications. To the best of our knowledge, the resulting composites are the best lightweight dual-functional materials with exceptionally high EMI SE and thermal conductivity performance among synthetic polymer composites.

20.
Nat Commun ; 8: 14964, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28406151

ABSTRACT

Interactive displays involve the interfacing of a stimuli-responsive sensor with a visual human-readable response. Here, we describe a polymeric electroluminescence-based stimuli-responsive display method that simultaneously detects external stimuli and visualizes the stimulant object. This organic light-emitting board is capable of both sensing and direct visualization of a variety of conductive information. Simultaneous sensing and visualization of the conductive substance is achieved when the conductive object is coupled with the light emissive material layer on application of alternating current. A variety of conductive materials can be detected regardless of their work functions, and thus information written by a conductive pen is clearly visualized, as is a human fingerprint with natural conductivity. Furthermore, we demonstrate that integration of the organic light-emitting board with a fluidic channel readily allows for dynamic monitoring of metallic liquid flow through the channel, which may be suitable for biological detection and imaging applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...