Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732456

ABSTRACT

Residual film pollution and excessive nitrogen fertilizer have become limiting factors for agricultural development. To investigate the feasibility of replacing conventional plastic film with biodegradable plastic film in cold and arid environments under nitrogen application conditions, field experiments were conducted from 2021 to 2022 with plastic film covering (including degradable plastic film (D) and ordinary plastic film (P)) combined with nitrogen fertilizer 0 (N0), 160 (N1), 320 (N2), and 480 (N3) kg·ha-1. The results showed no significant difference (p > 0.05) in dry matter accumulation, photosynthetic gas exchange parameters, soil enzyme activity, or yield of spring maize under degradable plastic film cover compared to ordinary plastic film cover. Nitrogen fertilizer is the main factor limiting the growth of spring maize. The above-ground and root biomass showed a trend of increasing and then decreasing with the increase in nitrogen application level. Increasing nitrogen fertilizer can also improve the photosynthetic gas exchange parameters of leaves, maintain soil enzyme activity, and reduce soil pH. Under the nitrogen application level of N2, the yield of degradable plastic film and ordinary plastic film coverage increased by 3.74~42.50% and 2.05~40.02%, respectively. At the same time, it can also improve water use efficiency and irrigation water use efficiency, but it will reduce nitrogen fertilizer partial productivity and nitrogen fertilizer agronomic use efficiency. Using multiple indicators to evaluate the effect of plastic film mulching combined with nitrogen fertilizer on the comprehensive growth of spring maize, it was found that the DN2 treatment had the best complete growth of maize, which was the best model for achieving stable yield and income increase and green development of spring maize in cold and cool irrigation areas.

2.
Front Plant Sci ; 14: 1211122, 2023.
Article in English | MEDLINE | ID: mdl-37767295

ABSTRACT

With improvement in living standards, consumer preferences for vegetables are changing from quantity- to quality-oriented. Water and nitrogen supply, as two major determinants of vegetable crop yield and quality, can be optimally managed to improve the yield and quality. To evaluate the response in yield, fruit quality, and water and nitrogen utilization of eggplant to different water and nitrogen management strategies, a 2-year (2021 and 2022) field trial under mulched drip irrigation was conducted. The growth period was divided into seedling, flowering and fruit set, fruit development, and fruit ripening stages. Three irrigation levels were applied during the flowering and fruit set stage: W0, adequate water supply (70%-80% of field water capacity, FC); W1, mild water deficit (60%-70% FC); and W2, moderate water deficit (50%-60% FC). In addition, three nitrogen application rates were applied: N1, low nitrogen level (215 kg ha-1); N2, medium nitrogen level (270 kg ha-1); and N3, high nitrogen level (325 kg ha-1). The irrigation and nitrogen rates were applied in all combinations (i.e., nine treatments in total). Adequate water supply throughout the reproductive period in combination with no nitrogen application served as the control (CK). The yield of the W1N2 treatment was significantly increased by 32.62% and 35.06% in 2021 and 2022, respectively, compared with that of the CK. Fruit soluble protein, soluble solids, and vitamin C contents were significantly higher under W1 than W2. Fruit quality was significantly higher under the N2 rate compared with the other nitrogen rates. The W1N2 treatment showed the highest water productivity, with a significant increase of 11.27%-37.84% (2021) and 14.71%-42.48% (2022) compared with that under the other treatments. Based on the average water-deficit degree and nitrogen application rate, W0 and N1 had the highest partial factor productivity of nitrogen. Assessment of the results using the TOPSIS (technique for order preference by similarity to an ideal solution) method indicated that mild water deficit in combination with the medium nitrogen application rate (W1N2) was the optimal water and nitrogen management strategy for cultivated eggplant. The present findings contribute novel insights into the sustainable cultivation of eggplant in an oasis arid environment.

3.
Front Plant Sci ; 14: 1153835, 2023.
Article in English | MEDLINE | ID: mdl-37396646

ABSTRACT

To investigate the evapotranspiration and crop coefficient of oasis watermelon under water deficit (WD), mild (60%-70% field capacity, FC)and moderate (50%-60% FC) WD levels were set up at the various growth stages of watermelon, including seedling stage (SS), vine stage (VS), flowering and fruiting stage (FS), expansion stage (ES), and maturity stage (MS), with adequate water supply (70%-80% FC) during the growing season as a control. A two-year (2020-2021) field trial was carried out in the Hexi oasis area of China to explore the effect of WD on watermelon evapotranspiration characteristics and crop coefficient under sub-membrane drip irrigation. The results indicated that the daily reference crop evapotranspiration showed a sawtooth fluctuation which was extremely significantly and positively correlated with temperature, sunshine hours, and wind speed. The water consumption during the entire growing season of watermelon varied from 281-323 mm (2020) and 290-334 mm (2021), among which the phasic evapotranspiration valued the maximum during ES, accounting for 37.85% (2020) and 38.94% (2021) in total, followed in the order of VS, SS, MS, and FS. The evapotranspiration intensity of watermelon increased rapidly from SS to VS, reaching the maximum with 5.82 mm·d-1 at ES, after which it gradually decreased. The crop coefficient at SS, VS, FS, ES, and MS varied from 0.400 to 0.477, from 0.550 to 0.771, from 0.824 to 1.168, from 0.910 to 1.247, and from 0.541 to 0.803, respectively. Any period of WD reduced the crop coefficient and evapotranspiration intensity of watermelon at that stage. And then the relationship between LAI and crop coefficient can be characterized better by an exponential regression, thereby establishing a model for estimating the evapotranspiration of watermelon with a Nash efficiency coefficient of 0.9 or more. Hence, the water demand characteristics of oasis watermelon differ significantly during different growth stages, and reasonable irrigation and water control management measures need to be conducted in conjunction with the water requirements features of each growth stage. Also, this work aims to provide a theoretical basis for the irrigation management of watermelon under sub-membrane drip irrigation in desert oases of cold and arid environments.

4.
Article in English | MEDLINE | ID: mdl-36674390

ABSTRACT

This study analyzed change and spatial patterns of land use in Shanxi from 2000 to 2020. The drivers of land use and cover change (LUCC) in cultivated lands, forest lands, grasslands, and rural construction areas were explored from four dimensions, including population, natural environment, location traffic, and economic development. The CA-Markov model was used to simulate the scenarios of natural growth (NG), ecological protection (EP), economic development (ED), food security (FS), ecological protection-economic development (EP-ED), and ecological protection-food security (EP-FS) in 2030. The results indicated that: (1) The conversion to built-up areas primarily dominated the LUCC processes, and their expansion was mainly to the detriment of the cultivated lands and grasslands during 2000-2020. (2) From 2000 to 2020, population, economy, and land productivity were the main factors of LUCC; the interaction of drivers for the increase of cultivated lands, forest lands, grasslands, and rural construction areas showed enhancement. (3) Under the NG, ED, and EP-ED scenarios, the rural construction areas would have increased significantly, while under the FS and EP-FS scenarios, the cultivated lands would only just have increased. These future land use scenarios can inform decision-makers to make sound decisions that balance socio-economic, ecological, and food security benefits.


Subject(s)
Conservation of Natural Resources , Forests , Conservation of Natural Resources/methods , Computer Simulation , Economic Development , China , Ecosystem
5.
Front Plant Sci ; 13: 1094158, 2022.
Article in English | MEDLINE | ID: mdl-36714710

ABSTRACT

Water shortage and wastage are critical challenges to sustainable agricultural development, especially in arid and semiarid regions worldwide. Isatis indigotica (woad), as a traditional Chinese herb, was planted in a large area in a cold and arid environment of Hexi. Regulated deficit irrigation can reduce the growth of some vegetative organs by changing the accumulation and distribution of photosynthetic products in crops, thus increasing the economic yield of crops. In agricultural production, crop productivity may be improved by mulched drip irrigation and deficit irrigation. Hence, a field experiment was conducted to investigate the responses of photosynthesis, malondialdehyde, osmotic regulators, antioxidant enzyme activities, and the yield of woad to water deficit at different growth stages. The growth stage of woad was divided in four stages: seedling, vegetative growth, fleshy root growth, and fleshy root maturity. During vegetative growth, fleshy root growth, and fleshy root maturity, three water gradients were set for plants with mild (65-75% in field water capacity, FC), moderate (55-65% in FC), and severe (45-55% in FC) deficits, respectively. In contrast, an adequate water supply (75-85% in FC) during the growth period was designed as the control (CK). The net photosynthetic rate (Pn), transpiration rate, and stomatal conductance of woad significantly decreased (P< 0.05) by moderate and severe water deficits. Still, rehydration after the water deficit could produce a noticeable compensation effect. In contrast, malondialdehyde and proline accumulation significantly increased under moderate and severe water deficits. At the same time, the superoxide dismutase, peroxidase, and catalase all had high activities (increased significantly by 19.87-39.28%, 19.91-34.26%, and 10.63-16.13% compared with CK, respectively), but yields were substantially lower, compared to CK. Additionally, the net photosynthetic rate was negatively correlated with antioxidant enzyme activity. The economic yield of plants subjected to continuous mild water deficit during both vegetative and fleshy root growth was not significantly different from that in CK. Still, the water use efficiency improved significantly. Therefore, the continuous mild water deficit during vegetative and fleshy root growth could improve the physiological and biochemical mechanisms of the plant, representing an optimal irrigation strategy for woad in cold and arid areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...