Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(17): 7653-7661, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38635861

ABSTRACT

The removal and conversion of nitrate (NO3-) from wastewater has become an important environmental and health topic. The NO3- can be reduced to nontoxic nitrogen (N2) for environmental remediation or ammonia (NH3) for recovery, in which the tailoring of the selectivity is greatly challenging. Here, by construction of the CuOx@TiO2 photocatalyst, the NO3- conversion efficiency is enhanced to ∼100%. Moreover, the precise regulation of selectivity to NH3 (∼100%) or N2 (92.67%) is accomplished by the synergy of cooperative redox reactions. It is identified that the selectivity of the NO3- photoreduction is determined by the combination of different oxidative reactions. The key roles of intermediates and reactive radicals are revealed by comprehensive in situ characterizations, providing direct evidence for the regulated selectivity of the NO3- photoreduction. Different active radicals are produced by the interaction of oxidative reactants and light-generated holes. Specifically, the introduction of CH3CHO as the oxidative reactant results in the generation of formate radicals, which drives selective NO3- reduction into N2 for its remediation. The alkyl radicals, contributed to by the (CH2OH)2 oxidation, facilitate the deep reduction of NO3- to NH3 for its upcycling. This work provides a technological basis for radical-directed NO3- reduction for its purification and resource recovery.


Subject(s)
Ammonia , Nitrates , Oxidation-Reduction , Ammonia/chemistry , Catalysis , Wastewater/chemistry
2.
J Virol ; 98(3): e0008824, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38386781

ABSTRACT

Type I and type II IFNs are important immune modulators in both innate and adaptive immunity. They transmit signaling by activating JAK-STAT pathways. Sirtuin 1 (SIRT1), a class III NAD+-dependent deacetylase, has multiple functions in a variety of physiological processes. Here, we characterized the novel functions of SIRT1 in the regulation of type I and type II IFN-induced signaling. Overexpression of SIRT1 inhibited type I and type II IFN-induced interferon-stimulated response element activation. In contrast, knockout of SIRT1 promoted type I and type II IFN-induced expression of ISGs and inhibited viral replication. Treatment with SIRT1 inhibitor EX527 had similar positive effects. SIRT1 physically associated with STAT1 or STAT3, and this interaction was enhanced by IFN stimulation or viral infection. By deacetylating STAT1 at K673 and STAT3 at K679/K685/K707/K709, SIRT1 downregulated the phosphorylation of STAT1 (Y701) and STAT3 (Y705). Sirt1+/- primary peritoneal macrophages and Sirt1+/- mice exhibited enhanced IFN-induced signaling and antiviral activity. Thus, SIRT1 is a novel negative regulator of type I and type II IFN-induced signaling through its deacetylase activity.IMPORTANCESIRT1 has been reported in the precise regulation of antiviral (RNA and DNA) immunity. However, its functions in type I and type II IFN-induced signaling are still unclear. In this study, we deciphered the important functions of SIRT1 in both type I and type II IFN-induced JAK-STAT signaling and explored the potential acting mechanisms. It is helpful for understanding the regulatory roles of SIRT1 at different levels of IFN signaling. It also consolidates the notion that SIRT1 is an important target for intervention in viral infection, inflammatory diseases, or even interferon-related therapies.


Subject(s)
Interferon Type I , Sirtuin 1 , Virus Diseases , Animals , Mice , Immunity, Innate , Interferon Type I/metabolism , Interferon-gamma , Phosphorylation , Signal Transduction , Sirtuin 1/genetics , Sirtuin 1/metabolism , STAT1 Transcription Factor/metabolism , Virus Diseases/immunology
SELECTION OF CITATIONS
SEARCH DETAIL