Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Water Res ; 259: 121812, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38810344

ABSTRACT

The environmental effects of biochar-derived organic carbon (BDOC) have attracted increasing attention. Nevertheless, it is unknown how BDOC might affect the natural attenuation of widely distributed chloroalkanes (e.g., 1,1,2,2-tetrachloroethane (TeCA)) in aqueous environments. We firstly observed that the kinetic constants (ke) of TeCA dehydrochlorination in the presence of BDOC samples or their different molecular size fractions (<1 kDa, 1∼10 kDa, and >10 kDa) ranged from 9.16×103 to 26.63×103 M-1h-1, which was significantly greater than the ke (3.53×103 M-1h-1) of TeCA dehydrochlorination in the aqueous solution at pH 8.0, indicating that BDOC samples and their different molecular size fractions all could promote TeCA dehydrochlorination. For a given BDOC sample, the kinetic constants (ke) of TeCA dehydrochlorination in the initial pH 9.0 solution was 2∼3 times greater than that in the initial pH 8.0 solution due to more formation of conjugate bases. Interestingly, their DOC concentration normalized kinetic constants (ke/[DOC]) were negatively correlated with SUVA254, and positively correlated with A220/A254 and the abundance of aromatic protein-like/polyphenol-like matters. A novel mechanism was proposed that the CH dipole of BDOC aliphatic structure first bound with the CCl dipole of TeCA to capture the TeCA molecule, then the conjugate bases (-NH-/-NH2 and deprotonated phenol-OH of BDOC) could attack the H atom attached to the ß-C atom of bound TeCA, causing a CCl bond breaking and the trichloroethylene formation. Furthermore, a fraction of >1 kDa had significantly greater ke/[DOC] values of TeCA dehydrochlorination than the fraction of <1 kDa because >1 kDa fraction had higher aliphiticity (more dipole-dipole sites) as well as more N-containing species and aromatic protein-like/polyphenol-like matters (more conjugate bases). The results are helpful for profoundly understanding the BDOC-mediated natural attenuation and fate change of chloroalkanes in the environment.

3.
J Ethnopharmacol ; 327: 118008, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38458343

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Compendium of Materia Medica and the Classic of Materia Medica, the two most prominent records of traditional Chinese medicine, documented the therapeutic benefits of Ganoderma sinense particularly in addressing pulmonary-related ailments. Ganoderma formosanum, an indigenous subspecies of G. sinense from Taiwan, has demonstrated the same therapeutic properties. AIM OF THE STUDY: The aim of this study is to identify bioactive compounds and evaluate the potential of G. formosanum extracts as a novel treatment to alleviate pulmonary fibrosis (PF). Using an in-house drug screening platform, two-stage screening was performed to determine their anti-fibrotic efficacy. METHODS AND MATERIALS: G. formosanum was fractionated into four partitions by solvents of different polarities. To determine their antifibrotic and pro-apoptotic properties, the fractions were analyzed using two TGF-ß1-induced pulmonary fibrosis cell models (NIH-3T3) and human pulmonary fibroblast cell lines, immunoblot, qRT-PCR, and annexin V assays. Subsequently, transcriptomic analysis was conducted to validate the findings and explore possible molecular pathways. The identification of potential bioactive compounds was achieved through UHPLC-MS/MS analysis, while molecular interaction study was investigated by multiple ligands docking and molecular dynamic simulations. RESULTS: The ethyl acetate fraction (EAF) extracted from G. formosanum demonstrated substantial anti-fibrotic and pro-apoptotic effects on TGF-ß1-induced fibrotic models. Moreover, the EAF exhibited no discernible cytotoxicity. Untargeted UHPLC-MS/MS analysis identified potential bioactive compounds in EAF, including stearic acid, palmitic acid, and pentadecanoic acid. Multiple ligands docking and molecular dynamic simulations further confirmed that those bioactive compounds possess the ability to inhibit TGF-ß receptor 1. CONCLUSION: Potential bioactive compounds in G. formosanum were successfully extracted and identified in the EAF, whose anti-fibrotic and pro-apoptotic properties could potentially modulate pulmonary fibrosis. This finding not only highlights the EAF's potential as a promising therapeutic candidate to treat pulmonary fibrosis, but it also elucidates how Ganoderma confers pulmonary health benefits as described in the ancient texts.


Subject(s)
Ganoderma , Materia Medica , Pulmonary Fibrosis , Humans , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta1/metabolism , Materia Medica/pharmacology , Tandem Mass Spectrometry , Fibrosis , Lung
4.
Cell Death Differ ; 31(4): 447-459, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38413797

ABSTRACT

Hypoxia is a hallmark of cancer development. However, the molecular mechanisms by which hypoxia promotes tumor metastasis are not fully understood. In this study, we demonstrate that hypoxia promotes breast cancer metastasis through suppression of ΔNp63α in a HIF1α-independent manner. We show that hypoxia-activated XBP1s forms a stable repressor protein complex with HDAC2 and EZH2 to suppress ΔNp63α transcription. Notably, H3K27ac is predominantly occupied on the ΔNp63 promoter under normoxia, while H3K27me3 on the promoter under hypoxia. We show that XBP1s binds to the ΔNp63 promoter to recruit HDAC2 and EZH2 in facilitating the switch of H3K27ac to H3K27me3. Pharmacological inhibition or the knockdown of either HDAC2 or EZH2 leads to increased H3K27ac, accompanied by the reduced H3K27me3 and restoration of ΔNp63α expression suppressed by hypoxia, resulting in inhibition of cell migration. Furthermore, the pharmacological inhibition of IRE1α, but not HIF1α, upregulates ΔNp63α expression in vitro and inhibits tumor metastasis in vivo. Clinical analyses reveal that reduced p63 expression is correlated with the elevated expression of XBP1, HDAC2, or EZH2, and is associated with poor overall survival in human breast cancer patients. Together, these results indicate that hypoxia-activated XBP1s modulates the epigenetic program in suppression of ΔNp63α to promote breast cancer metastasis independent of HIF1α and provides a molecular basis for targeting the XBP1s/HDAC2/EZH2-ΔNp63α axis as a putative strategy in the treatment of breast cancer metastasis.


Subject(s)
Breast Neoplasms , Enhancer of Zeste Homolog 2 Protein , Epigenesis, Genetic , Histone Deacetylase 2 , Hypoxia-Inducible Factor 1, alpha Subunit , Tumor Suppressor Proteins , X-Box Binding Protein 1 , Humans , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , Female , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Animals , Cell Line, Tumor , Neoplasm Metastasis , Mice , Gene Expression Regulation, Neoplastic , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Hypoxia/genetics
5.
Rev Esp Enferm Dig ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345522

ABSTRACT

A 14-year-old girl underwent colonoscopy due to repeated flesh-washing watery stools and dull pain around the umbilicus for 10 days. She felt tired for 1 month with no other significant discomfort. The hemoglobin (Hb) is 66g/L, and the red blood cell (RBC) count was 3.24*10^12/L in routine blood tests at admission. Abdominal computed tomography (CT) images showed submucosal tumor (SMT) in the descending colon. The abdominal computed tomography (CT) images showed submucosal tumor (SMT) in the descending colon. The SMT, supplied by the superior and inferior mesenteric arteries, showed significant enhancement at the arterial stage. It did not reveal any bowel wall thickening, enlarged lymph nodes, or ascites, suggesting that the SMT was probably a benign submucosal lesion. The submucosal tumor lesion measured in size 25*25mm located at the descending colon. Endoscopic ultrasonography imaging showed a mixed hyperechoic with a regular edge, originating from the submucosa and closely related to the muscularis propria. There were no evident features of malignancy or metastasis. Endoscopic full-thickness resection (EFR) was carried out for en bloc resection. The tumor was located in the submucosa with a clear boundary and intact capsule. The tumor cells exhibited acinar and nested patterns with abundant thin-walled blood vessels. These tumor cells were epithelioid, displaying abundant clear or eosinophilic cytoplasm. The nuclei were round or oval. Immunohistochemical analysis revealed that the tumor cells showed positive staining for HMB-45 and TFE3, but were negative for SMA.

6.
Mol Nutr Food Res ; 68(5): e2300667, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38282089

ABSTRACT

SCOPE: Particulate matter (PM) contains toxic organic matter and heavy metals that enter the entire body through blood flow and may cause mortality. Ganoderma formosanum mycelium, a valuable traditional Chinese medicine that has been used since ancient times, contains various active ingredients that can effectively impede inflammatory responses on murine alveolar macrophages induced by PM particles. METHODS AND RESULTS: An experimental study assessing the effect of G. formosanum mycelium extract's water fraction (WA) on PM-exposed murine alveolar macrophages using ROS measurement shows that WA reduces intracellular ROS by 12% and increases cell viability by 16% when induced by PM particles. According to RNA-Sequencing, western blotting, and real-time qPCR are conducted to analyze the metabolic pathway. The WA reduces the protein ratio in p-NF-κB/NF-κB by 18% and decreases the expression of inflammatory genes, including IL-1ß by 38%, IL-6 by 29%, and TNF-α by 19%. Finally, the identification of seven types of anti-inflammatory compounds in the WA fraction is achieved through UHPLC-ESI-Orbitrap-Elite-MS/MS analysis. These compounds include anti-inflammatory compounds, namely thiamine, adenosine 5'-monophosphate, pipecolic acid, L-pyroglutamic acid, acetyl-L-carnitine, D-mannitol, and L-malic acid. CONCLUSIONS: The study suggests that the WA has the potential to alleviate the PM -induced damage in alveolar macrophages, demonstrating its anti-inflammatory properties.


Subject(s)
Ganoderma , Macrophages, Alveolar , NF-kappa B , Mice , Animals , Macrophages, Alveolar/chemistry , Macrophages, Alveolar/metabolism , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Tandem Mass Spectrometry , Particulate Matter/toxicity , Particulate Matter/analysis , Anti-Inflammatory Agents/pharmacology , Lung/chemistry , Lung/metabolism
7.
Sci Rep ; 13(1): 22825, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38129509

ABSTRACT

During the COVID19 pandemic, there is a pronounced collective mental health issue among college students. Forecasting the trend of emotional changes in on-campus students is crucial to effectively address this issue. This study proposes an Attention-LSTM neural network model that performs deep learning on key input sequence information, so as to predict the distribution of emotional states in college students. By testing 60 consecutive days of emotional data, the model successfully predicts students' emotional distribution, triggers and resolution strategies, with an accuracy rate of no less than 99%. Compared with models such as ARIMA, SARIMA and VAR, this model shows significant advantages in accuracy, operational efficiency, and data collection requirements. The integration of deep learning technology with student management in this study offers a novel approach to address emotional issues among students under exceptional circumstances.


Subject(s)
COVID-19 , Cognitive Dysfunction , Humans , COVID-19/epidemiology , Pandemics , Students , Emotions
8.
Nat Commun ; 14(1): 6473, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833415

ABSTRACT

Tumor growth requires elevated ribosome biogenesis. Targeting ribosomes is an important strategy for cancer therapy. The ribosome inhibitor, homoharringtonine (HHT), is used for the clinical treatment of leukemia, yet it is ineffective for the treatment of solid tumors, the reasons for which remain unclear. Here we show that Snail1, a key factor in the regulation of epithelial-to-mesenchymal transition, plays a pivotal role in cellular surveillance response upon ribotoxic stress. Mechanistically, ribotoxic stress activates the JNK-USP36 signaling to stabilize Snail1 in the nucleolus, which facilitates ribosome biogenesis and tumor cell survival. Furthermore, we show that HHT activates the JNK-USP36-Snail1 axis in solid tumor cells, but not in leukemia cells, resulting in solid tumor cell resistance to HHT. Importantly, a combination of HHT with the inhibition of the JNK-USP36-Snail1 axis synergistically inhibits solid tumor growth. Together, this study provides a rationale for targeting the JNK-USP36-Snail1 axis in ribosome inhibition-based solid tumor therapy.


Subject(s)
Leukemia , Neoplasms , Humans , Cell Survival , Ribosomes , Cell Nucleolus , Ubiquitin Thiolesterase
9.
J Med Chem ; 66(15): 10528-10557, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37463500

ABSTRACT

Idiopathic pulmonary fibrosis is incurable, and its progression is difficult to control and thus can lead to pulmonary deterioration. Pan-histone deacetylase inhibitors such as SAHA have shown potential for modulating pulmonary fibrosis yet with off-target effects. Therefore, selective HDAC inhibitors would be beneficial for reducing side effects. Toward this goal, we designed and synthesized 24 novel HDAC6, HDAC8, or dual HDAC6/8 inhibitors and established a two-stage screening platform to rapidly screen for HDAC inhibitors that effectively mitigate TGF-ß-induced pulmonary fibrosis. The first stage consisted of a mouse NIH-3T3 fibroblast prescreen and yielded five hits. In the second stage, human pulmonary fibroblasts (HPFs) were used, and four out of the five hits were tested for caco-2 permeability and liver microsome stability to give two potential leads: J27644 (15) and 20. This novel two-stage screen platform will accelerate the discovery and reduce the cost of developing HDAC inhibitors to mitigate TGF-ß-induced pulmonary fibrosis.


Subject(s)
Histone Deacetylase Inhibitors , Idiopathic Pulmonary Fibrosis , Mice , Animals , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Transforming Growth Factor beta , Histone Deacetylases/therapeutic use , Drug Evaluation, Preclinical , Caco-2 Cells , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Histone Deacetylase 6 , Repressor Proteins
10.
Plant Physiol Biochem ; 201: 107841, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37331075

ABSTRACT

Drought stress occurs more frequently in recent years due to the global climate change. Widely distributed in northern China, Mongolia, and Russia, Trollius chinensis Bunge has high medicinal and ornamental values and is often exposed to drought stress, while the mechanism underlying its drought response is still unclear. In this study, we applied 74-76% (control, CK), 49-51% (mild drought), 34-36% (moderate drought), and 19-21% (severe drought, SD) of the soil gravimetric water content to T. chinensis, and measured leaf physiological characteristics on the 0, 5th, 10th, 15th day after the soil reaching the set drought severities, and on the 10th day after rehydration. The results showed that many physiological parameters, such as chlorophyll contents, Fv/Fm, ΦPSⅡ, Pn, and gs decreased with the deepening of severity and duration of drought stress and recovered to some extent after rehydration. On the 10th day of drought stress, leaves in SD and CK were selected for RNA-Seq, and 1649 differentially expressed genes (DEGs) were found, including 548 up-regulated and 1101 down-regulated DEGs. Gene Ontology enrichment found that the DEGs were mainly enriched in catalytic activity and thylakoid. Koyto Encyclopedia of Genes and Genomes enrichment found that DEGs were enriched in some metabolic pathways such as carbon fixation and photosynthesis. Among them, the differential expression of genes related to photosynthesis process, ABA biosynthesis and signaling pathway, such as NCED, SnRK2, PsaD, PsbQ, and PetE, might explain why T. chinensis could tolerate and recover from as long as 15 days of severe drought conditions.


Subject(s)
Droughts , Photosynthesis , Photosynthesis/genetics , Fluid Therapy , Soil , Gene Expression , Stress, Physiological/genetics , Gene Expression Regulation, Plant
11.
J Cell Mol Med ; 27(15): 2183-2193, 2023 08.
Article in English | MEDLINE | ID: mdl-37334757

ABSTRACT

Feline injection-site sarcomas (FISSs) are highly invasive malignant mesenchymal neoplasms that arise from injection sites in cats. Although the tumorigenesis of FISSs is still uncertain, there is a consensus that FISS is associated with chronic inflammation caused by irritation of injection-related trauma and foreign chemical substances. Chronic inflammation can provide a proper microenvironment for tumour development, which has been known as one of the risk factors of tumorigenesis in many tumours. To investigate the tumorigenesis of FISS and screen for its potential therapeutic targets, cyclooxygenase-2 (COX-2), an inflammation-enhancing enzyme, was selected as a target for this study. In vitro experiments using FISS- and normal tissue-derived primary cells and robenacoxib, a highly selective COX-2 inhibitor, were performed. The results demonstrated that expression of COX-2 could be detected in formalin-fixed and paraffin-embedded FISS tissues and FISS-derived primary cells. Cell viability, migration and colony formation of FISS-derived primary cells were inhibited, and cell apoptosis was enhanced by robenacoxib in a dose-dependent manner. However, susceptibility to robenacoxib varied in different lines of FISS primary cells and was not completely correlated with COX-2 expression. Our results suggest that COX-2 inhibitors could be potential adjuvant therapeutics against FISSs.


Subject(s)
Sarcoma , Soft Tissue Neoplasms , Cats , Animals , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Sarcoma/pathology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Soft Tissue Neoplasms/etiology , Soft Tissue Neoplasms/pathology , Soft Tissue Neoplasms/veterinary , Inflammation/complications , Cell Transformation, Neoplastic , Carcinogenesis , Tumor Microenvironment
13.
Front Psychol ; 14: 1088268, 2023.
Article in English | MEDLINE | ID: mdl-37168424

ABSTRACT

Objective: To compare the differences in gut microbiota and short-chain fatty acids (SCFAs; metabolites of gut microbiota) in the serum of patients with first-episode depression and the healthy population and to analyze the relationship between gut microbiota and metabolite SCFAs and the clinical symptoms of major depressive disorder (MDD). Methods: A total of 45 patients with first-episode depression and 22 healthy volunteers were chosen to complete relevant scale evaluations, and feces samples and venous blood samples were collected. The 16S RNA method was used to analyze the intestinal microflora and the characteristics of serum SCFAs detection by ELISA kit, as well as the intestinal flora, SCFAs content and their correlation with MDD clinical indicators. Results: The abundance of Akkermansia, Megamonas, Prevotellaceae NK3B31 group, and butyrate-producing bacteria, Lachnospira, Subdoligranulum, Blautia, and Dialister, and acetate-producing bacteria, Streptococcus, in the gut microbiota of the MDD group was lower than that in the control (C) group. The abundance of Parasutterella in the MDD group was higher than that in the C group. Dialister negatively correlated with all measured clinical symptoms (r < 0, P < 0.05). The serum SCFA content in the MDD group was higher than that in the C group, and the content positively correlated with the Hamilton anxiety scale scores (r = 0.584, P < 0.05). Conclusion: The results demonstrated that the MDD group differed from the C group in terms of gut microbiota and SCFAs in the serum and that the change in certain intestinal bacteria might participate in the pathogenic mechanism of MDD.

14.
Plants (Basel) ; 12(9)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37176907

ABSTRACT

The wall-associated kinases (WAKs) can perceive and transmit extracellular signals as one kind of unique receptor-like kinases (RLKs) involved in the regulation of cell expansion, pathogen resistance and abiotic stress tolerance. To understand their potential roles and screen some key candidates in Medicago truncatula (M. truncatula), genome-wide identification and characterization of MtWAKs were conducted in this study. A total of 54 MtWAK genes were identified and classified into four groups based on their protein domains. They were distributed on all chromosomes, while most of them were clustered on chromosome 1 and 3. The synteny analysis showed that 11 orthologous pairs were identified between M. truncatula and Arabidopsis thaliana (A. thaliana) and 31 pairs between M. truncatula and Glycine max (G. max). The phylogenetic analysis showed that WAK-RLKs were classified into five clades, and they exhibited a species-specific expansion. Most MtWAK-RLKs had similar exon-intron organization and motif distribution. Multiple cis-acting elements responsive to phytohormones, stresses, growth and development were observed in the promoter regions of MtWAK-RLKs. In addition, the expression patterns of MtWAK-RLKs varied with different plant tissues, developmental stages and biotic and abiotic stresses. Interestingly, plasm membrane localized MtWAK24 significantly inhibited Phytophthora infection in tobacco. The study provides valuable information for characterizing the molecular functions of MtWAKs in regulation of plant growth, development and stress tolerance in legume plants.

15.
Cancer Lett ; 563: 216192, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37088327

ABSTRACT

Immune checkpoint inhibitors are groundbreaking resources for cancer therapy. However, only a few patients with hepatocellular carcinoma (HCC) have shown positive responses to anti-PD-1 therapy. Neoantigens are sequence-altered proteins resulting from somatic mutations in cancer. This study identified the neoantigens of Hep-55.1C and Dt81 Hepa1-6 HCCs by comparing their whole exome sequences with those of a normal C57BL/6 mouse liver. Immunogenic long peptides were pooled as peptide vaccines. The vaccination elicited tumor-reactive immune responses in C57BL/6 mice, as demonstrated by IFN-γ ELISPOT and an in vitro killing assay of splenocytes. In the treatment of three mouse HCC models, combined neoantigen vaccination and anti-PD-1 resulted in more significant tumor regression than monotherapies. Flow cytometry of the tumor-infiltrating lymphocytes showed decreased Treg cells and monocytic myeloid-derived suppressor cells, increased CD8+ T cells, enhanced granzyme B expression, and reduced exhaustion-related markers PD-1 and Lag-3 on CD8+ T cells in the combination group. These findings provide a strong rationale for conducting clinical studies of using neoantigen vaccination in combination with anti-PD-1 to treat patients with HCC.


Subject(s)
Cancer Vaccines , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , CD8-Positive T-Lymphocytes , Mice, Inbred C57BL , Cancer Vaccines/pharmacology
16.
Food Res Int ; 168: 112707, 2023 06.
Article in English | MEDLINE | ID: mdl-37120190

ABSTRACT

The study utilized fresh fourth-day Chenopodium formosanum sprouts as the substrate for Rhizopus oligosporus fermentation. The resultant products showed higher antioxidant capacity than those from C. formosanum grains. Compared to traditional plate fermentation (PF), fermentation in a bioreactor (BF) (35 °C, 0.4 vvm aeration at 5 rpm) led to higher free peptide content (99.56 ± 7.77 mg casein tryptone/g) and enzyme activity (amylase, glucosidase, and proteinase are 2.21 ± 0.01, 54.57 ± 10.88, and 40.81 ± 6.52 U/g, respectively) than traditional plate fermentation (PF). Using mass spectrometry analysis, two peptides TDEYGGSIENRFMN and DNSMLTFEGAPVQGAAAITEK were predicted to possess high bioactive properties as DPP IV and ACE inhibitors. Additionally, over twenty new metabolites (aromatics, amines, fatty acids, and carboxylic acids) were discovered in the BF system compared to its PF counterpart. Results suggest that using a BF system to ferment C. formosanum sprouts is an appropriate method to scale-up fermentation and enhance nutritional values as well as bioactivities.


Subject(s)
Chenopodium , Fermentation , Chenopodium/chemistry , Bioreactors , Antioxidants , Mass Spectrometry
18.
Molecules ; 28(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36903493

ABSTRACT

Biochar-derived dissolved organic carbon (BDOC), as a highly activated carbonaceous fraction of biochar, significantly affects the environmental effect of biochar. This study systematically investigated the differences in the properties of BDOC produced at 300-750 °C in three atmosphere types (including N2 and CO2 flows and air limitation) as well as their quantitative relationship with biochar properties. The results showed that BDOC in biochar pyrolyzed in air limitation (0.19-2.88 mg/g) was more than that pyrolyzed in N2 (0.06-1.63 mg/g) and CO2 flows (0.07-1.74 mg/g) at 450-750 °C. The aliphaticity, humification, molecular weight, and polarity of BDOC strongly depended on the atmosphere types as well as the pyrolysis temperatures. BDOC produced in air limitation contained more humic-like substances (0.65-0.89) and less fulvic-like substances (0.11-0.35) than that produced in N2 and CO2 flows. The multiple linear regression of the exponential form of biochar properties (H and O contents, H/C and (O+N)/C) could be used to quantitatively predict the bulk content and organic component contents of BDOC. Additionally, self-organizing maps could effectively visualize the categories of fluorescence intensity and components of BDOC from different pyrolysis atmospheres and temperatures. This study highlights that pyrolysis atmosphere types are a crucial factor controlling the BDOC properties, and some characteristics of BDOC can be quantitatively evaluated based on the properties of biochar.


Subject(s)
Dissolved Organic Matter , Pyrolysis , Temperature , Carbon Dioxide/analysis , Charcoal , Humic Substances/analysis , Carbon
19.
FEBS Lett ; 597(8): 1125-1137, 2023 04.
Article in English | MEDLINE | ID: mdl-36700826

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent cancers worldwide. Heat shock factor 1 (HSF1) is a conserved transcriptional factor that plays a critical role in maintaining cellular proteostasis. However, the role of HSF1 in HNSCC development remains largely unclear. Here, we report that HSF1 promotes forkhead box protein O3a (FOXO3a)-dependent transcription of ΔNp63α (p63 isoform in the p53 family; inhibits cell migration, invasion, and metastasis), which leads to upregulation of cyclin-dependent kinase 4 expression and HNSCC tumour growth. Ablation of HSF1 or treatment with KRIBB11, a specific pharmacological inhibitor of HSF1, significantly suppresses ΔNp63α expression and HNSCC tumour growth. Clinically, the expression of HSF1 is positively correlated with the expression of ΔNp63α in HNSCC tumours. Together, this study demonstrates that the HSF1-ΔNp63α pathway is critically important for HNSCC tumour growth.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Humans , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cyclin-Dependent Kinase 4 , Squamous Cell Carcinoma of Head and Neck , Tumor Suppressor Proteins/metabolism , Forkhead Box Protein O3/metabolism , Tumor Suppressor Protein p53/metabolism , Heat Shock Transcription Factors/metabolism
20.
Sci Total Environ ; 857(Pt 2): 159424, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36244488

ABSTRACT

Biochar-derived water-soluble organic carbon (BWSOC) plays important roles in the environmental effect of biochar. The environmental behavior and fate of BWSOC are closely related to its size distribution and chemical components. However, the molecular size-dependent BWSOC components and properties remain little known. To evaluate molecular size-dependent BWSOC characteristics, BWSOC samples were prepared by pyrolyzing biomasses in air-limitation and N2-flow atmospheres at 300-600 °C and fractionated through a series of membranes with different pore sizes including 0.7 µm, 0.45 µm, 100 kDa, 10 kDa, 3 kDa, and 1 kDa. In all BWSOCs, <1 kDa and 0.45-0.7 µm fractions had the maximum abundance (mean: 40.6 %) and the minimum abundance (mean: 4.4 %), respectively. The spectral characteristics of BWSOC including polarity index, spectral slope, and humification index varied significantly with molecular size. The fluorescence excitation-emission matrix parallel factor (EEM-PARAFAC) analysis indicated that BWSOC was mainly composed of three organic components (humic-like, fulvic-like, and aromatic protein/polyphenol-like substances). Humic-like and fulvic-like substances mainly existed in <1 kDa fraction, while aromatic protein/polyphenol-like substances mainly existed in medium-size fractions (3 kDa-0.45 µm). The different locations of <1 kDa, 1 kDa-0.45 µm, and 0.45-0.7 µm fractions in EEM and PARAFAC self-organizing maps indicated self-organizing maps could effectively distinguish 0.45-0.7 µm, 1 kDa-0.45 µm, and < 1 kDa fractions via the variations of fluorescence intensity and organic components. Additionally, the distribution ratio of different molecular size fractions as well as the abundances of organic components in different molecular size fractions were strongly controlled by pyrolysis atmospheres (air-limitation and N2-flow). This study systematically clarified the organic components and properties of different molecular size fractions in BWSOC, and the results are helpful to understand the possible environmental behavior and fate of BWSOC.


Subject(s)
Carbon , Humic Substances , Humic Substances/analysis , Water , Polyphenols , Spectrometry, Fluorescence/methods , Factor Analysis, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL
...