Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
PLoS One ; 19(4): e0288121, 2024.
Article in English | MEDLINE | ID: mdl-38568890

ABSTRACT

Deep learning shows promise for automating detection and classification of wildlife from digital aerial imagery to support cost-efficient remote sensing solutions for wildlife population monitoring. To support in-flight orthorectification and machine learning processing to detect and classify wildlife from imagery in near real-time, we evaluated deep learning methods that address hardware limitations and the need for processing efficiencies to support the envisioned in-flight workflow. We developed an annotated dataset for a suite of marine birds from high-resolution digital aerial imagery collected over open water environments to train the models. The proposed 3-stage workflow for automated, in-flight data processing includes: 1) image filtering based on the probability of any bird occurrence, 2) bird instance detection, and 3) bird instance classification. For image filtering, we compared the performance of a binary classifier with Mask Region-based Convolutional Neural Network (Mask R-CNN) as a means of sub-setting large volumes of imagery based on the probability of at least one bird occurrence in an image. On both the validation and test datasets, the binary classifier achieved higher performance than Mask R-CNN for predicting bird occurrence at the image-level. We recommend the binary classifier over Mask R-CNN for workflow first-stage filtering. For bird instance detection, we leveraged Mask R-CNN as our detection framework and proposed an iterative refinement method to bootstrap our predicted detections from loose ground-truth annotations. We also discuss future work to address the taxonomic classification phase of the envisioned workflow.


Subject(s)
Animals, Wild , Deep Learning , Animals , Workflow , Neural Networks, Computer , Remote Sensing Technology/methods , Birds
2.
J Med Imaging (Bellingham) ; 10(4): 045501, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37408983

ABSTRACT

Purpose: Human perception and decisions are biased toward previously seen stimuli. This phenomenon is known as serial dependence and has been extensively studied for the last decade. Recent evidence suggests that clinicians' judgments of mammograms might also be impacted by serial dependence. However, the stimuli used in previous psychophysical experiments on this question, consisting of artificial geometric shapes and healthy tissue backgrounds, were unrealistic. We utilized realistic and controlled generative adversarial network (GAN)-generated radiographs to mimic images that clinicians typically encounter. Approach: Mammograms from the digital database for screening mammography (DDSM) were utilized to train a GAN. This pretrained GAN was then adopted to generate a large set of authentic-looking simulated mammograms: 20 circular morph continuums, each with 147 images, for a total of 2940 images. Using these stimuli in a standard serial dependence experiment, participants viewed a random GAN-generated mammogram on each trial and subsequently matched the GAN-generated mammogram encountered using a continuous report. The characteristics of serial dependence from each continuum were analyzed. Results: We found that serial dependence affected the perception of all naturalistic GAN-generated mammogram morph continuums. In all cases, the perceptual judgments of GAN-generated mammograms were biased toward previously encountered GAN-generated mammograms. On average, perceptual decisions had 7% categorization errors that were pulled in the direction of serial dependence. Conclusions: Serial dependence was found even in the perception of naturalistic GAN-generated mammograms created by a GAN. This supports the idea that serial dependence could, in principle, contribute to decision errors in medical image perception tasks.

3.
Magn Reson Med ; 90(5): 2116-2129, 2023 11.
Article in English | MEDLINE | ID: mdl-37332200

ABSTRACT

PURPOSE: This work was aimed at proposing a supervised learning-based method that directly synthesizes contrast-weighted images from the Magnetic Resonance Fingerprinting (MRF) data without performing quantitative mapping and spin-dynamics simulations. METHODS: To implement our direct contrast synthesis (DCS) method, we deploy a conditional generative adversarial network (GAN) framework with a multi-branch U-Net as the generator and a multilayer CNN (PatchGAN) as the discriminator. We refer to our proposed approach as N-DCSNet. The input MRF data are used to directly synthesize T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) images through supervised training on paired MRF and target spin echo-based contrast-weighted scans. The performance of our proposed method is demonstrated on in vivo MRF scans from healthy volunteers. Quantitative metrics, including normalized root mean square error (nRMSE), peak signal-to-noise ratio (PSNR), structural similarity (SSIM), learned perceptual image patch similarity (LPIPS), and Fréchet inception distance (FID), were used to evaluate the performance of the proposed method and compare it with others. RESULTS: In-vivo experiments demonstrated excellent image quality with respect to that of simulation-based contrast synthesis and previous DCS methods, both visually and according to quantitative metrics. We also demonstrate cases in which our trained model is able to mitigate the in-flow and spiral off-resonance artifacts typically seen in MRF reconstructions, and thus more faithfully represent conventional spin echo-based contrast-weighted images. CONCLUSION: We present N-DCSNet to directly synthesize high-fidelity multicontrast MR images from a single MRF acquisition. This method can significantly decrease examination time. By directly training a network to generate contrast-weighted images, our method does not require any model-based simulation and therefore can avoid reconstruction errors due to dictionary matching and contrast simulation (code available at:https://github.com/mikgroup/DCSNet).


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Phantoms, Imaging , Signal-To-Noise Ratio , Image Processing, Computer-Assisted/methods
4.
Sci Rep ; 12(1): 15701, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36127431

ABSTRACT

This study introduces a deep learning approach to predicting demographic features from meibography images. A total of 689 meibography images with corresponding subject demographic data were used to develop a deep learning model for predicting gland morphology and demographics from images. The model achieved on average 77%, 76%, and 86% accuracies for predicting Meibomian gland morphological features, subject age, and ethnicity, respectively. The model was further analyzed to identify the most highly weighted gland morphological features used by the algorithm to predict demographic characteristics. The two most important gland morphological features for predicting age were the percent area of gland atrophy and the percentage of ghost glands. The two most important morphological features for predicting ethnicity were gland density and the percentage of ghost glands. The approach offers an alternative to traditional associative modeling to identify relationships between Meibomian gland morphological features and subject demographic characteristics. This deep learning methodology can currently predict demographic features from de-identified meibography images with better than 75% accuracy, a number which is highly likely to improve in future models using larger training datasets, which has significant implications for patient privacy in biomedical imaging.


Subject(s)
Deep Learning , Algorithms , Demography , Diagnostic Techniques, Ophthalmological , Humans , Meibomian Glands
5.
Article in English | MEDLINE | ID: mdl-35984801

ABSTRACT

Real world data often exhibits a long-tailed and open-ended (i.e., with unseen classes) distribution. A practical recognition system must balance between majority (head) and minority (tail) classes, generalize across the distribution, and acknowledge novelty upon the instances of unseen classes (open classes). We define Open Long-Tailed Recognition++ (OLTR++) as learning from such naturally distributed data and optimizing for the classification accuracy over a balanced test set which includes both known and open classes. OLTR++ handles imbalanced classification, few-shot learning, open-set recognition, and active learning in one integrated algorithm, whereas existing classification approaches often focus only on one or two aspects and deliver poorly over the entire spectrum. The key challenges are: 1) how to share visual knowledge between head and tail classes, 2) how to reduce confusion between tail and open classes, and 3) how to actively explore open classes with learned knowledge. Our algorithm, OLTR++, maps images to a feature space such that visual concepts can relate to each other through a memory association mechanism and a learned metric (dynamic meta-embedding) that both respects the closed world classification of seen classes and acknowledges the novelty of open classes. Additionally, we propose an active learning scheme based on visual memory, which learns to recognize open classes in a data-efficient manner for future expansions. On three large-scale open long-tailed datasets we curated from ImageNet (object-centric), Places (scene-centric), and MS1M (face-centric) data, as well as three standard benchmarks (CIFAR-10-LT, CIFAR-100-LT, and iNaturalist-18), our approach, as a unified framework, consistently demonstrates competitive performance. Notably, our approach also shows strong potential for the active exploration of open classes and the fairness analysis of minority groups.

6.
Magn Reson Med ; 88(1): 476-491, 2022 07.
Article in English | MEDLINE | ID: mdl-35373388

ABSTRACT

PURPOSE: To improve reconstruction fidelity of fine structures and textures in deep learning- (DL) based reconstructions. METHODS: A novel patch-based Unsupervised Feature Loss (UFLoss) is proposed and incorporated into the training of DL-based reconstruction frameworks in order to preserve perceptual similarity and high-order statistics. The UFLoss provides instance-level discrimination by mapping similar instances to similar low-dimensional feature vectors and is trained without any human annotation. By adding an additional loss function on the low-dimensional feature space during training, the reconstruction frameworks from under-sampled or corrupted data can reproduce more realistic images that are closer to the original with finer textures, sharper edges, and improved overall image quality. The performance of the proposed UFLoss is demonstrated on unrolled networks for accelerated two- (2D) and three-dimensional (3D) knee MRI reconstruction with retrospective under-sampling. Quantitative metrics including normalized root mean squared error (NRMSE), structural similarity index (SSIM), and our proposed UFLoss were used to evaluate the performance of the proposed method and compare it with others. RESULTS: In vivo experiments indicate that adding the UFLoss encourages sharper edges and more faithful contrasts compared to traditional and learning-based methods with pure ℓ2$$ {\ell}_2 $$ loss. More detailed textures can be seen in both 2D and 3D knee MR images. Quantitative results indicate that reconstruction with UFLoss can provide comparable NRMSE and a higher SSIM while achieving a much lower UFLoss value. CONCLUSION: We present UFLoss, a patch-based unsupervised learned feature loss, which allows the training of DL-based reconstruction to obtain more detailed texture, finer features, and sharper edges with higher overall image quality under DL-based reconstruction frameworks. (Code available at: https://github.com/mikgroup/UFLoss).


Subject(s)
Deep Learning , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Retrospective Studies
7.
J Percept Imaging ; 5: 0005021-50215, 2022 Jan.
Article in English | MEDLINE | ID: mdl-37621378

ABSTRACT

Medical image data is critically important for a range of disciplines, including medical image perception research, clinician training programs, and computer vision algorithms, among many other applications. Authentic medical image data, unfortunately, is relatively scarce for many of these uses. Because of this, researchers often collect their own data in nearby hospitals, which limits the generalizabilty of the data and findings. Moreover, even when larger datasets become available, they are of limited use because of the necessary data processing procedures such as de-identification, labeling, and categorizing, which requires significant time and effort. Thus, in some applications, including behavioral experiments on medical image perception, researchers have used naive artificial medical images (e.g., shapes or textures that are not realistic). These artificial medical images are easy to generate and manipulate, but the lack of authenticity inevitably raises questions about the applicability of the research to clinical practice. Recently, with the great progress in Generative Adversarial Networks (GAN), authentic images can be generated with high quality. In this paper, we propose to use GAN to generate authentic medical images for medical imaging studies. We also adopt a controllable method to manipulate the generated image attributes such that these images can satisfy any arbitrary experimenter goals, tasks, or stimulus settings. We have tested the proposed method on various medical image modalities, including mammogram, MRI, CT, and skin cancer images. The generated authentic medical images verify the success of the proposed method. The model and generated images could be employed in any medical image perception research.

8.
IEEE Trans Neural Netw Learn Syst ; 33(3): 940-951, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33170785

ABSTRACT

Complex-valued data are ubiquitous in signal and image processing applications, and complex-valued representations in deep learning have appealing theoretical properties. While these aspects have long been recognized, complex-valued deep learning continues to lag far behind its real-valued counterpart. We propose a principled geometric approach to complex-valued deep learning. Complex-valued data could often be subject to arbitrary complex-valued scaling; as a result, real and imaginary components could covary. Instead of treating complex values as two independent channels of real values, we recognize their underlying geometry: we model the space of complex numbers as a product manifold of nonzero scaling and planar rotations. Arbitrary complex-valued scaling naturally becomes a group of transitive actions on this manifold. We propose to extend the property instead of the form of real-valued functions to the complex domain. We define convolution as the weighted Fréchet mean on the manifold that is equivariant to the group of scaling/rotation actions and define distance transform on the manifold that is invariant to the action group. The manifold perspective also allows us to define nonlinear activation functions, such as tangent ReLU and G -transport, as well as residual connections on the manifold-valued data. We dub our model SurReal, as our experiments on MSTAR and RadioML deliver high performance with only a fractional size of real- and complex-valued baseline models.

9.
IEEE Trans Pattern Anal Mach Intell ; 44(8): 4419-4431, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33793397

ABSTRACT

Deep neural networks are widely used for understanding 3D point clouds. At each point convolution layer, features are computed from local neighbourhoods of 3D points and combined for subsequent processing in order to extract semantic information. Existing methods adopt the same individual point neighborhoods throughout the network layers, defined by the same metric on the fixed input point coordinates. This common practice is easy to implement but not necessarily optimal. Ideally, local neighborhoods should be different at different layers, as more latent information is extracted at deeper layers. We propose a novel end-to-end approach to learn different non-rigid transformations of the input point cloud so that optimal local neighborhoods can be adopted at each layer. We propose both linear (affine) and non-linear (projective and deformable) spatial transformers for 3D point clouds. With spatial transformers on the ShapeNet part segmentation dataset, the network achieves higher accuracy for all categories, with 8 percent gain on earphones and rockets in particular. Our method also outperforms the state-of-the-art on other point cloud tasks such as classification, detection, and semantic segmentation. Visualizations show that spatial transformers can learn features more efficiently by dynamically altering local neighborhoods according to the geometry and semantics of 3D shapes in spite of their within-category variations.

10.
Optom Vis Sci ; 98(9): 1094-1103, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34469930

ABSTRACT

SIGNIFICANCE: Quantifying meibomian gland morphology from meibography images is used for the diagnosis, treatment, and management of meibomian gland dysfunction in clinics. A novel and automated method is described for quantifying meibomian gland morphology from meibography images. PURPOSE: Meibomian gland morphological abnormality is a common clinical sign of meibomian gland dysfunction, yet there exist no automated methods that provide standard quantifications of morphological features for individual glands. This study introduces an automated artificial intelligence approach to segmenting individual meibomian gland regions in infrared meibography images and analyzing their morphological features. METHODS: A total of 1443 meibography images were collected and annotated. The dataset was then divided into development and evaluation sets. The development set was used to train and tune deep learning models for segmenting glands and identifying ghost glands from images, whereas the evaluation set was used to evaluate the performance of the model. The gland segmentations were further used to analyze individual gland features, including gland local contrast, length, width, and tortuosity. RESULTS: A total of 1039 meibography images (including 486 upper and 553 lower eyelids) were used for training and tuning the deep learning model, whereas the remaining 404 images (including 203 upper and 201 lower eyelids) were used for evaluations. The algorithm on average achieved 63% mean intersection over union in segmenting glands, and 84.4% sensitivity and 71.7% specificity in identifying ghost glands. Morphological features of each gland were also fed to a support vector machine for analyzing their associations with ghost glands. Analysis of model coefficients indicated that low gland local contrast was the primary indicator for ghost glands. CONCLUSIONS: The proposed approach can automatically segment individual meibomian glands in infrared meibography images, identify ghost glands, and quantitatively analyze gland morphological features.


Subject(s)
Eyelid Diseases , Meibomian Gland Dysfunction , Algorithms , Artificial Intelligence , Humans , Meibomian Glands/diagnostic imaging , Specimen Handling , Tears
11.
Transl Vis Sci Technol ; 10(2): 4, 2021 02 05.
Article in English | MEDLINE | ID: mdl-34003889

ABSTRACT

Purpose: The purpose of this study was to develop an unsupervised feature learning approach that automatically measures Meibomian gland (MG) atrophy severity from meibography images and discovers subtle relationships between meibography images according to visual similarity. Methods: One of the latest unsupervised learning approaches is to apply feature learning based on nonparametric instance discrimination (NPID), a convolutional neural network (CNN) backbone model trained to encode meibography images into 128-dimensional feature vectors. The network aims to learn a similarity metric across all instances (e.g. meibography images) and groups visually similar instances together. A total of 706 meibography images with corresponding meiboscores were collected and annotated for the use of network learning and performance evaluation. Results: Four hundred ninety-seven meibography images were used for network learning and tuning, whereas the remaining 209 images were used for network model evaluations. The proposed nonparametric instance discrimination approach achieved 80.9% meiboscore grading accuracy on average, outperforming the clinical team by 25.9%. Additionally, a 3D feature visualization and agglomerative hierarchical clustering algorithms were used to discover the relationship between meibography images. Conclusions: The proposed NPID approach automatically analyses MG atrophy severity from meibography images without prior image annotations, and categorizes the gland characteristics through hierarchical clustering. This method provides quantitative information on the MG atrophy severity based on the analysis of phenotypes. Translational Relevance: The study presents a Meibomian gland atrophy evaluation method for meibography images based on unsupervised learning. This method may be used to aid diagnosis and management of Meibomian gland dysfunction without prior image annotations, which require time and resources.


Subject(s)
Eyelid Diseases , Meibomian Gland Dysfunction , Atrophy/pathology , Eyelid Diseases/pathology , Humans , Meibomian Glands/diagnostic imaging , Neural Networks, Computer
12.
Article in English | MEDLINE | ID: mdl-36741986

ABSTRACT

Radiologists and pathologists frequently make highly consequential perceptual decisions. For example, visually searching for a tumor and recognizing whether it is malignant can have a life-changing impact on a patient. Unfortunately, all human perceivers-even radiologists-have perceptual biases. Because human perceivers (medical doctors) will, for the foreseeable future, be the final judges of whether a tumor is malignant, understanding and mitigating human perceptual biases is important. While there has been research on perceptual biases in medical image perception tasks, the stimuli used for these studies were highly artificial and often critiqued. Realistic stimuli have not been used because it has not been possible to generate or control them for psychophysical experiments. Here, we propose to use Generative Adversarial Networks (GAN) to create vivid and realistic medical image stimuli that can be used in psychophysical and computer vision studies of medical image perception. Our model can generate tumor-like stimuli with specified shapes and realistic textures in a controlled manner. Various experiments showed the authenticity of our GAN-generated stimuli and the controllability of our model.

13.
Transl Vis Sci Technol ; 8(6): 37, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31867138

ABSTRACT

PURPOSE: To develop a deep learning approach to digitally segmenting meibomian gland atrophy area and computing percent atrophy in meibography images. METHODS: A total of 706 meibography images with corresponding meiboscores were collected and annotated for each one with eyelid and atrophy regions. The dataset was then divided into the development and evaluation sets. The development set was used to train and tune the deep learning model, while the evaluation set was used to evaluate the performance of the model. RESULTS: Four hundred ninety-seven meibography images were used for training and tuning the deep learning model while the remaining 209 images were used for evaluations. The algorithm achieves 95.6% meiboscore grading accuracy on average, largely outperforming the lead clinical investigator (LCI) by 16.0% and the clinical team by 40.6%. Our algorithm also achieves 97.6% and 95.4% accuracy for eyelid and atrophy segmentations, respectively, as well as 95.5% and 66.7% mean intersection over union accuracies (mean IU), respectively. The average root-mean-square deviation (RMSD) of the percent atrophy prediction is 6.7%. CONCLUSIONS: The proposed deep learning approach can automatically segment the total eyelid and meibomian gland atrophy regions, as well as compute percent atrophy with high accuracy and consistency. This provides quantitative information of the gland atrophy severity based on meibography images. TRANSLATIONAL RELEVANCE: Based on deep neural networks, the study presents an accurate and consistent gland atrophy evaluation method for meibography images, and may contribute to improved understanding of meibomian gland dysfunction.

14.
Sci Rep ; 9(1): 8137, 2019 05 31.
Article in English | MEDLINE | ID: mdl-31148564

ABSTRACT

The implementation of intelligent software to identify and classify objects and individuals in visual fields is a technology of growing importance to operatives in many fields, including wildlife conservation and management. To non-experts, the methods can be abstruse and the results mystifying. Here, in the context of applying cutting edge methods to classify wildlife species from camera-trap data, we shed light on the methods themselves and types of features these methods extract to make efficient identifications and reliable classifications. The current state of the art is to employ convolutional neural networks (CNN) encoded within deep-learning algorithms. We outline these methods and present results obtained in training a CNN to classify 20 African wildlife species with an overall accuracy of 87.5% from a dataset containing 111,467 images. We demonstrate the application of a gradient-weighted class-activation-mapping (Grad-CAM) procedure to extract the most salient pixels in the final convolution layer. We show that these pixels highlight features in particular images that in some cases are similar to those used to train humans to identify these species. Further, we used mutual information methods to identify the neurons in the final convolution layer that consistently respond most strongly across a set of images of one particular species. We then interpret the features in the image where the strongest responses occur, and present dataset biases that were revealed by these extracted features. We also used hierarchical clustering of feature vectors (i.e., the state of the final fully-connected layer in the CNN) associated with each image to produce a visual similarity dendrogram of identified species. Finally, we evaluated the relative unfamiliarity of images that were not part of the training set when these images were one of the 20 species "known" to our CNN in contrast to images of the species that were "unknown" to our CNN.


Subject(s)
Animals, Wild/classification , Deep Learning , Neural Networks, Computer , Africa , Algorithms , Animals , Biodiversity , Cluster Analysis , Computer Graphics , Ecology , Image Processing, Computer-Assisted , Pattern Recognition, Automated , Reproducibility of Results , Software , Species Specificity
15.
J Synchrotron Radiat ; 25(Pt 3): 655-670, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29714177

ABSTRACT

A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization.

16.
Med Image Anal ; 15(5): 690-707, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21839666

ABSTRACT

In medical research, many applications require counting and measuring small regions in a large image. Extracting these regions poses a dilemma in terms of segmentation granularity due to fine structures and segmentation complexity due to large image sizes. We propose a constrained spectral graph partitioning framework to address the former while also reducing the segmentation complexity associated with the latter. The final segmentation is obtained from a set of patch segmentations, each independently derived subject to stitching constraints between neighboring patches. Individual segmentation is based on local pairwise cues designed to pop out all cells simultaneously from their common background, while the constraints are derived from mutual agreement analysis on patch segmentations from a previous round of segmentation. Our results demonstrate that the constrained segmentation not only stitches solutions seamlessly along overlapping patch borders but also refines the segmentation in the patch interiors.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Microscopy/methods , Pattern Recognition, Automated/methods , Algorithms , Animals , Humans , Image Enhancement/methods , Lymphocytes
17.
IEEE Trans Pattern Anal Mach Intell ; 33(7): 1339-55, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21135437

ABSTRACT

Matching visual patterns that appear scaled, rotated, and deformed with respect to each other is a challenging problem. We propose a linear formulation that simultaneously matches feature points and estimates global geometrical transformation in a constrained linear space. The linear scheme enables search space reduction based on the lower convex hull property so that the problem size is largely decoupled from the original hard combinatorial problem. Our method therefore can be used to solve large scale problems that involve a very large number of candidate feature points. Without using prepruning in the search, this method is more robust in dealing with weak features and clutter. We apply the proposed method to action detection and image matching. Our results on a variety of images and videos demonstrate that our method is accurate, efficient, and robust.

18.
Med Image Comput Comput Assist Interv ; 13(Pt 1): 119-26, 2010.
Article in English | MEDLINE | ID: mdl-20879222

ABSTRACT

Extracting numerous cells in a large microscopic image is often required in medical research. The challenge is to reduce the segmentation complexity on a large image without losing the fine segmentation granularity of small structures. We propose a constrained spectral graph partitioning approach where the segmentation of the entire image is obtained from a set of patch segmentations, independently derived but subject to stitching constraints between neighboring patches. The constraints come from mutual agreement analysis on patch segmentations from a previous round. Our experimental results demonstrate that the constrained segmentation not only stitches solutions seamlessly along overlapping patch borders but also refines the segmentation in the patch interiors.


Subject(s)
Artificial Intelligence , Cells, Cultured/cytology , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Microscopy/methods , Pattern Recognition, Automated/methods , Subtraction Technique , Algorithms , Humans , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
19.
IEEE Trans Pattern Anal Mach Intell ; 26(2): 173-83, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15376893

ABSTRACT

We consider data clustering problems where partial grouping is known a priori. We formulate such biased grouping problems as a constrained optimization problem, where structural properties of the data define the goodness of a grouping and partial grouping cues define the feasibility of a grouping. We enforce grouping smoothness and fairness on labeled data points so that sparse partial grouping information can be effectively propagated to the unlabeled data. Considering the normalized cuts criterion in particular, our formulation leads to a constrained eigenvalue problem. By generalizing the Rayleigh-Ritz theorem to projected matrices, we find the global optimum in the relaxed continuous domain by eigendecomposition, from which a near-global optimum to the discrete labeling problem can be obtained effectively. We apply our method to real image segmentation problems, where partial grouping priors can often be derived based on a crude spatial attentional map that binds places with common salient features or focuses on expected object locations. We demonstrate not only that it is possible to integrate both image structures and priors in a single grouping process, but also that objects can be segregated from the background without specific object knowledge.


Subject(s)
Algorithms , Artificial Intelligence , Cluster Analysis , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Pattern Recognition, Automated , Subtraction Technique , Computer Graphics , Image Enhancement/methods , Information Storage and Retrieval/methods , Numerical Analysis, Computer-Assisted , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...