Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters











Publication year range
1.
Sci Total Environ ; 951: 175481, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39147059

ABSTRACT

The detrimental impacts of titanium dioxide nanoparticles (TiO2NPs) on the ecosystem and organisms have aroused great public concerns. However, the information on their concentration in the real aquatic environment is still limited, hindering the rational evaluation of their potential hazards. In this study, water samples from Taihu Lake were collected in June and November 2023, to investigate the spatial distribution and temporal variations of TiO2NPs. Using phosphorylated Fe3O4 particles based magnetic solid phase extraction and ICP-MS determination, high concentrations of TiO2NPs were detected in the western and northern regions of Taihu Lake. These areas contribute to 83 % of the total runoff into the lake. Total Ti levels were typically higher in November than in June, but no marked seasonal difference was observed for TiO2NPs. Different shapes of TiO2NPs with both smooth and rough surfaces were observed in the surface water. To further distinguish whether these TiO2NPs were sourced from the natural background or anthropogenic sources, the ratios of Ti to other rare elements including Nb were calculated. In November, the Ti/Nb ratios at most sampling sites were significantly higher than those in June, indicating that a large amount of engineered TiO2NPs are discharged into Taihu Lake during the summer and autumn seasons. Our study contributes to the understanding of contamination levels, spatial distribution, and temporal variation of TiO2NPs in lake systems, and provides valuable data for their further risk assessment.

2.
Dalton Trans ; 53(29): 12331-12337, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38984652

ABSTRACT

The exploration of nonlinear optical crystals with ultraviolet (UV) transparent ranges and easy-to-grow large-size crystals is one of the current research interests. Herein, by combining borate and phosphate groups, a novel congruently melting alkali-mixed metal borophosphate, Li3Na7B4P6O26 (LNBPO) with UV transparency was successfully designed and synthesized using a high-temperature flux method. LNBPO crystallizes in the non-centrosymmetric (NCS) and polar orthorhombic space group Pca21 (no. 29), showcasing interesting (B2P3O13)∞ chains along the c axis. Notably, LNBPO has a moderate second harmonic generation (SHG) response (∼0.38 × KDP) and displays a wide transmission ranging from 0.22 to 3.68 µm, as measured by a [001]-oriented crystal wafer. Furthermore, a high-quality single crystal of LNBPO with sizes up to 14 × 14 × 12 mm3 was grown using the top-seeded solution growth method. The refractive indices of LNBPO were determined by applying the minimum deviation angle method. These results show that LNBPO possesses a phase-matching wavelength as short as 483 nm, indicating its potential as a new UV NLO crystal.

3.
STAR Protoc ; 5(2): 103104, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38861383

ABSTRACT

Approaches for detecting micro(nano)plastics (MNPs) released from intravenous infusion products (IVIPs) are vital for evaluating the safety of both IVIPs and their derived MNPs on human health, yet current understanding is limited. Here, we present a protocol for detecting polyvinyl chloride (PVC) MNPs by combining Raman spectroscopy, scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDS), and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). We describe steps for collecting, pretreating, and measuring PVC MNPs released from IVIPs. For complete details on the use and execution of this protocol, please refer to Li et al.1.


Subject(s)
Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Infusions, Intravenous , Gas Chromatography-Mass Spectrometry/methods , Polyvinyl Chloride/chemistry , Humans , Microscopy, Electron, Scanning/methods , Spectrometry, X-Ray Emission/methods , Plastics/chemistry
4.
Anal Bioanal Chem ; 416(13): 3271-3280, 2024 May.
Article in English | MEDLINE | ID: mdl-38584179

ABSTRACT

Accurate quantification of nano-selenium (nSe) and other ionic Se species in aquatic environments is a prerequisite for reliable estimation of their potential hazards. In this study, a micropore membrane filtration-based method followed by ICP-MS analysis was proposed for the selective concentration and determination of nSe in the water column. Polyvinylidene fluoride (PVDF) and nylon micropore filtration membranes were proven to efficiently capture nSe under optimal conditions (retention > 91.0 ± 0.87%). At the same time, ionic selenite and selenate could escape from the membranes, realizing the isolation of nSe and ionic Se species. The interference of dissolved organic matter (DOM) during separation can be resolved by adding Ca(II) ions, which can induce the formation of DOM aggregates by cation bridging effects. nSe retained on PVDF membranes could be effectively eluted with FL-70 (a powerful alkaline surfactant) aqueous solutions (0.5%, m/v) while maintaining the original size and morphology. Although nSe trapped on nylon membranes could not be easily eluted, quantification can also be achieved after membrane digestion. Speciation of ionic selenite and selenate in the filtrate was further conducted with an anion exchange column by using HPLC coupled with ICP-MS. The developed method was used to analyze Se species in six real water samples. Spiking experiments showed that the recoveries of nSe ranged from 70.2 ± 2.7% to 85.8 ± 1.3% at a spike level of 0.2 µg/L, and the recoveries of Se(IV) and Se(VI) ranged from 83.6 ± 0.5% to 101 ± 1% at a spike level of 0.55 µg/L, verifying the feasibility for the analysis of environmental water samples. This work provides possibilities to investigate the transformation and potential risks of nSe in the environment.

5.
Anal Chem ; 96(1): 471-479, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38116615

ABSTRACT

The application of selenium nanoparticle (SeNP)-based fertilizers can cause SeNPs to enter the soil environment. Considering the possible transformation of SeNPs and the species-dependent toxicity of selenium (Se), accurate analysis of SeNPs and other Se species present in the soil would help rationally assess the potential hazards of SeNPs to soil organisms. Herein, a novel method for speciation of SeNPs and other Se species in soil was established. Under the optimized conditions, SeNPs, selenite, selenate, and seleno amino acid could be simultaneously extracted from the soil with mixtures of tetrasodium pyrophosphate (5 mM) and potassium dihydrogen phosphate (1.2 µM), while inert Se species (mainly metal selenide) remained in the soil. Then, extracted SeNPs can be effectively captured by a nylon membrane (0.45 µm) and quantified by inductively coupled plasma mass spectrometry (ICP-MS). Other extracted Se species can be separated and quantified by high-performance liquid chromatography coupled with ICP-MS. Based on the difference between the total Se contents and extracted Se contents, the amount of metal selenide can be calculated. The limits of detection of the method were 0.02 µg/g for SeNPs, 0.05 µg/g for selenite, selenate, and selenocystine, and 0.25 µg/g for selenomethionine, respectively. Spiking experiments also showed that our method was applicable to real soil sample analysis. The present method contributes to understanding the speciation of Se in the soil environment and further estimating the occurrence and application risks of SeNPs.


Subject(s)
Nanoparticles , Selenium Compounds , Selenium , Selenium/analysis , Selenic Acid , Soil/chemistry , Selenium Compounds/chemistry , Selenious Acid
6.
Eco Environ Health ; 2(2): 61-73, 2023 Jun.
Article in English | MEDLINE | ID: mdl-38075291

ABSTRACT

The wide application of nanomaterials and plastic products generates a substantial number of nanoparticulate pollutants in the environment. Nanoparticulate pollutants are quite different from their bulk counterparts because of their unique physicochemical properties, which may pose a threat to environmental organisms and human beings. To accurately predict the environmental risks of nanoparticulate pollutants, great efforts have been devoted to developing reliable methods to define their occurrence and track their fate and transformation in the environment. Herein, we summarized representative studies on the preconcentration, separation, formation, and transformation of nanoparticulate pollutants in environmental samples. Finally, some perspectives on future research directions are proposed.

7.
iScience ; 26(12): 108454, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38077139

ABSTRACT

Understanding the pathways of human exposure to micro(nano)plastics (MNPs) is crucial for assessing their health impacts. Intravenous infusion can induce MNPs direct entry into the human blood, posing serious risks on human health, but remains unclear. Herein, we developed comprehensive analytical methods to detect polyvinyl chloride (PVC) MNPs down to 20 nm, and found about 0.52 µg equal to 105-1011 particles of PVC-MNPs released from intravenous infusion products (IVIPs) during each intravenous infusion of 250 mL injection. The released amounts of MNPs from IVIPs were dependent on the plastic materials, and the injection volume and composition. These findings indicated that the released MNPs should be directly introduced into the human blood circulatory system, causing serious impacts on human health. Our study reveals a previously ignored but important pathway of human exposure to MNPs, and calls for further research on the potential risks of these MNPs on human health.

8.
Environ Sci Technol ; 57(32): 12010-12018, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37506359

ABSTRACT

Determination of microplastics and nanoplastics (MNPs), especially small MPs and NPs (<150 µm), in solid environmental matrices is a challenging task due to the formation of stable aggregates between MNPs and natural colloids. Herein, a novel method for extracting small MPs and NPs embedded in soils/sediments/sludges has been developed by combining tetramethylammonium hydroxide (TMAH) digestion with dichloromethane (DCM) dissolution. The solid samples were digested with TMAH, and the collected precipitate was washed with anhydrous ethanol to eliminate the natural organic matter. Then, the MNPs in precipitate were extracted by dissolving in DCM under ultrasonic conditions. Under the optimized digestion and extraction conditions, the factors including sizes and concentrations of MNPs showed insignificant effects on the extraction process. The feasibility of this sample preparation method was verified by the satisfactory spiked recoveries (79.6-91.4%) of polystyrene, polyethylene, polypropylene, poly(methyl methacrylate), polyvinyl chloride, and polyethylene terephthalate MNPs in soil/sediment/sludge samples. The proposed sample preparation method was coupled with pyrolysis gas chromatography-mass spectrometry to determine trace small MPs and NPs with a relatively low detection limit of 2.3-29.2 µg/g. Notably, commonly used MNPs were successfully detected at levels of 4.6-51.4 µg/g in 6 soil/sediment/sludge samples. This proposed method is promising for evaluating small solid-embedded MNP pollution.


Subject(s)
Microplastics , Plastics , Plastics/analysis , Gas Chromatography-Mass Spectrometry , Sewage/chemistry , Methylene Chloride/analysis , Solubility , Soil/chemistry , Digestion
9.
NanoImpact ; 31: 100478, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37499754

ABSTRACT

Due to the growing number of the world's population, there is an urgent need for high-quality food to meet global food security. Traditional fertilizers and pesticides face the problems of low utilization efficiency and possible hazards to non-target organisms. Selenium (Se) is an essential trace element for animals and humans. As a result, Se nanoparticles (SeNPs) have aroused intense interest and found opportunities in agricultural use. Herein, we summarized representative studies on the potential application of SeNPs in agriculture, including mitigating biotic and abiotic stresses in plants, promoting seed germination and plant growth, and improving Se contents and nutritional values in crops, and the underlying mechanisms were also discussed. Finally, future directions are highlighted to get a deep insight into this field.

10.
Environ Sci Technol ; 57(29): 10754-10762, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37428629

ABSTRACT

Plastic has been demonstrated to release nanoplastics (NPs) into the atmosphere under sunlight irradiation, posing a continuous health risk to the respiratory system. However, due to lack of reliable quantification methods, the occurrence and distribution of NPs in the atmosphere remain unclear. Polystyrene (PS) micro- and nanoplastics (MNPs) represent a crucial component of atmospheric MNPs. In this study, we proposed a simple and robust method for determining the concentration of atmospheric PS NPs using pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). Following active sampling, the filter membrane is directly ground and introduced into the Py-GC/MS system to quantify PS NPs. The proposed method demonstrates excellent reproducibility and high sensitivity, with a detection limit as low as down to 15 pg/m3 for PS NPs. By using this method, the occurrence of PS NPs in both indoor and outdoor atmospheres has been confirmed. Furthermore, the results showed that the abundance of outdoor PS NPs was significantly higher than that of indoor samples, and there was no significant difference in NP vertical distribution within a height of 28.6 m. This method can be applied for the routine monitoring of atmospheric PS NPs and for evaluating their risk to human health.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Humans , Polystyrenes , Microplastics , Gas Chromatography-Mass Spectrometry , Pyrolysis , Reproducibility of Results , Water Pollutants, Chemical/analysis , Nanoparticles/chemistry
11.
Sci Total Environ ; 881: 163222, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37019231

ABSTRACT

Micro- and nano-plastic (MNP) pollution has attracted public concerns. Currently, most environmental researches focus on large microplastics (MPs), while small MNPs that have great impacts on marine ecosystems are rarely reported. Understanding the pollution levels and distribution patterns of small MNPs could help assess their potential impacts on the ecosystem. Polystyrene (PS) MNPs were often used as models to assess their toxicity, hence, we collected 21 sites in a Chinese sea area (the Bohai Sea) to analyze their pollution level and horizontal distribution in surface water samples, and vertical distributions in five sites with the water depth >25 m. Samples were filtered by glass membranes (1 µm) to trap MPs, which were frozen, ground, dried, and detected by pyrolysis-gas chromatography-mass spectrometry (pyGC-MS); while the nanoplastics (NPs) in the filtrate were captured with alkylated ferroferric oxide (Fe3O4) to form aggregates, which were separated by glass membrane (300 nm) filtration for pyGC-MS determination. Small PS MPs (1-100 µm) and NPs (<1 µm) were detected in 18 samples with the mass concentrations ranging from <0.015 to 0.41 µg/L, indicating that PS MNPs are widely present in Bohai Sea. Our study contributes to understanding the pollution levels and distribution patterns of MNPs (<100 µm) in the marine system and provides valuable data for their further risk assessment.

12.
J Environ Sci (China) ; 130: 14-23, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37032031

ABSTRACT

The application of selenium nanoparticles (SeNPs) as nanofertilizers may lead to the release of SeNPs into aquatic systems. However, the environmental behavior of SeNPs is rarely studied. In this study, using alginate-coated SeNPs (Alg-SeNPs) and polyvinyl alcohol-coated SeNPs (PVA-SeNPs) as models, we systematically investigated the aggregation and stability of SeNPs under various water conditions. PVA-SeNPs were highly stable in mono- and polyvalent electrolytes, probably due to the strong steric hindrance of the capping agent. Alg-SeNPs only suffered from a limited increase in size, even at 2500 mmol/L NaCl and 200 mmol/L MgCl2, while they underwent apparent aggregation in CaCl2 and LaCl3 solutions. The binding of Ca2+ and La3+ with the guluronic acid part in alginate induced the formation of cross-linking aggregates. Natural organic matter enhanced the stability of Alg-SeNPs in monovalent electrolytes, while accelerated the attachment of Alg-SeNPs in polyvalent electrolytes, due to the cation bridge effects. The long-term stability of SeNPs in natural water showed that the aggregation sizes of Alg-SeNPs and PVA-SeNPs increased to several hundreds of nanometers or above 10 µm after 30 days, implying that SeNPs may be suspended in the water column or further settle down, depending on the surrounding water chemistry. The study may contribute to the deep insight into the fate and mobility of SeNPs in the aquatic environment. The varying fate of SeNPs in different natural waters also suggests that the risks of SeNPs to organisms living in diverse depths in the aquatic compartment should be concerned.


Subject(s)
Nanoparticles , Selenium , Nanoparticles/chemistry , Electrolytes/chemistry , Alginates , Water
13.
J Environ Sci (China) ; 128: 45-54, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36801041

ABSTRACT

The removal of iodide (I-) from source waters is an effective strategy to minimize the formation of iodinated disinfection by-products (DBPs), which are more toxic than their brominated and chlorinated analogues. In this work, a nanocomposite Ag-D201 was synthesized by multiple in situ reduction of Ag-complex in D201 polymer matrix, to achieve highly efficient removal of iodide from water. Scanning electron microscope /energy dispersive spectrometer characterization showed that uniform cubic silver nanoparticles (AgNPs) evenly dispersed in the D201 pores. The equilibrium isotherms data for iodide adsorption onto Ag-D201 was well fitted with Langmuir isotherm with the adsorption capacity of 533 mg/g at neutral pH. The adsorption capacity of Ag-D201 increased with the decrease of pH in acidic aqueous solution, and reached the maximum value of 802 mg/g at pH 2. This was attributed to the oxidization of I-, by dissolved oxygen under the catalysis of AgNPs, to I2 which was finally adsorbed as AgI3. However, the aqueous solutions at pH 7 - 11 could hardly affect the iodide adsorption. The adsorption of I- was barely affected by real water matrixes such as competitive anions (SO42-, NO3-, HCO3-, Cl-) and natural organic matter, of which interference of NOM was offset by the presence of Ca2+. The proposed synergistic mechanism for the excellent performance of iodide adsorption by the absorbent was ascribed to the Donnan membrane effect caused by the D201 resin, the chemisorption of I- by AgNPs, and the catalytic effect of AgNPs.


Subject(s)
Metal Nanoparticles , Water Pollutants, Chemical , Water , Iodides , Polystyrenes , Silver , Metal Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Adsorption
14.
J Environ Sci (China) ; 126: 40-47, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36503767

ABSTRACT

Hazardous waste of chemical oxygen demand (COD) test (HWCOD) is one of the most common laboratory wastewaters, containing large amounts of H2SO4 and highly toxic Cr3+ and Hg2+. Current treatment methods suffered from incomplete removal of Cr3+ and high-cost. Herein, a humic acid-coated zirconium oxide-resin nanocomposite (HA-HZO-201) was fabricated for efficient recovery of Cr3+ and Hg2+ in HWCOD. The synthesized HA-HZO-201 shows excellent tolerance to wide pH range (1-5) and high salinity (3.5 mol/L NaCl), as well as adsorption capacity for Cr3+ (37.5 mg/g) and Hg2+ (121.3 mg/g). After treating with HA-HZO-201 by using a fixed-bed adsorption procedure, the final Cr3+ and Hg2+ concentrations in HWCOD decreased to 0.28 and 0.02 mg/L, respectively. In addition, the HA-HZO-201 can be regenerated by desorption and recovery of Cr3+ and Hg2+ using HNO3 and thiourea as eluents, respectively. After 5 cycles of adsorption/desorption, the removal efficiencies still reach up to 86.0% for Cr3+ and 89.7% for Hg2+, indicating an excellent regeneration of HA-HZO-201. We hope this work open new opportunities for treatment of HWCOD with high-efficiency and low-cost.


Subject(s)
Hazardous Waste , Mercury , Humic Substances , Chromium , Biological Oxygen Demand Analysis
15.
Environ Sci Technol ; 56(24): 17694-17701, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36480640

ABSTRACT

Nanoplastics (NPs) have been successively detected in different environmental matrixes and have aroused great concern worldwide. However, the fate of NPs in real environments such as seawater remains unclear, impeding their environmental risk assessment. Herein, multiple techniques were employed to monitor the particle number concentration, size, and morphology evolution of polystyrene NPs in seawater under simulated sunlight over a time course of 29 days. Aggregation was found to be a continuous process that occurred constantly and was markedly promoted by light irradiation. Moreover, the occurrence of NP swelling, fragmentation, and polymer leaching was evidenced by both transmission electron microscopy and scanning electron microscopy techniques. The statistical results of different transformation types suggested that swelling induces fragmentation and polymer leakage and that light irradiation plays a positive but not decisive role in this transformation. The observation of fragmentation and polymer leakage of poly(methyl methacrylate) and poly(vinyl chloride) NPs suggests that these transformation processes are general for NPs of different polymer types. Facilitated by the increase of surface functional groups, the ions in seawater could penetrate into NPs and then stretch the polymer structure, leading to the swelling phenomenon and other transformations.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Microplastics , Polymers , Seawater/chemistry , Polystyrenes , Water Pollutants, Chemical/analysis
16.
Anal Chem ; 94(47): 16328-16336, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36378246

ABSTRACT

Application of selenium nanoparticle (SeNP)-based fertilizers results in the release of SeNPs to aquatic systems, where SeNPs may transform into inorganic selenite (Se(IV)) and selenate (Se(VI)) with higher toxicity. However, methods for the speciation analysis of different Se species are lacking, hindering the accurate assessment of the risks of SeNPs. Herein, for the first time, a Triton X-45 (TX-45)-based dual-cloud point extraction (CPE) method was established for the selective determination of SeNPs, Se(IV), and Se(VI) in water. TX-45 can adsorb on the surface of SeNPs and facilitate the extraction of SeNPs into the lower TX-45-rich phase in the first CPE, while Se(VI) and Se(IV) retain in the upper aqueous phase. In the second CPE, Se(IV) can selectively associate with diethyldithiocarbamate and be concentrated in the TX-45-rich phase, whereas Se(VI) remains in the upper phase. Different Se species can be isolated and then quantified by ICP-MS. The presence of coexisting ions and dissolved organic matter (0-30 mg C/L) did not interfere with extraction and separation. The feasibility of the presented method was confirmed by the analysis of natural water samples, with a detection limit of 0.03 µg/L and recoveries in the ranges of 61.1-104, 65.5-113, and 80.3-131% for SeNPs, Se(IV), and Se(VI), respectively. This study aims to provide an effective method to track the fate and transformation of SeNPs in aquatic systems and further contribute to estimating the potential risks of SeNPs to environmental organisms and human bodies.


Subject(s)
Nanoparticles , Selenium , Humans , Selenium/analysis , Ditiocarb , Octoxynol , Water
17.
J Chromatogr A ; 1682: 463503, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36152483

ABSTRACT

Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) has been widely used for the detection of micro- and nanoplastics (MNPs) in the environment. However, there is a lack of thorough investigation on the effects of pyrolysis temperature and time, as well as the particle source, size and mass of MNPs on the pyrolysis efficiency and pyrolysis product distribution of MNPs. Herein, taking the common plastics polystyrene (PS) as a model, we systematically evaluated the influences of the above factors on the pyrolysis of PS MNPs. Results showed that pyrolysis temperature and time significantly affect the pyrolysis efficiency. By measuring the relative response values of the indicator compound styrene trimers to styrene monomer, the optimum condition was determined as the temperature of 510 â„ƒ and pyrolysis time longer than 18 s. Meanwhile, the mass of MNPs also affected the distribution of PS pyrolysis products. The proportions of styrene dimers and trimers increased slightly with PS MNP mass, while the source, particle size of MNPs have little effect on the pyrolysis product distribution. This work proposed a suitable pyrolysis temperature and time for the determination of PS by Py-GC/MS, which would contribute to the accurate analysis of PS MNPs in the environment.


Subject(s)
Polystyrenes , Pyrolysis , Heating , Microplastics , Polystyrenes/chemistry , Temperature
18.
Environ Sci Technol ; 56(12): 8255-8265, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35652387

ABSTRACT

Although nanoplastics (NPs) are recognized as emerging anthropogenic particulate pollutants, the occurrence of NPs in the environment is rarely reported, partly due to the lack of sensitive methods for the concentration and detection of NPs. Herein, we present an efficient method for enriching NPs of different compositions and various sizes. Alkylated ferroferric oxide (Fe3O4) particles were prepared as adsorbents for highly efficient capture of NPs in environmental waters, and the formed large Fe3O4-NP agglomerates were separated by membrane filtration. Detection limits of 0.02-0.03 µg/L were obtained for polystyrene (PS) and poly(methyl methacrylate) (PMMA) NPs by detection with pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). When analyzing real water samples from different sources, it is remarkable that PS NPs were detected in 11 out of 15 samples with concentrations ranging from <0.07 to 0.73 µg/L, while PMMA were not detected. The wide detection of PS NPs in our study confirms the previous speculation that NPs may be ubiquitous in the environmental waters. The accurate quantification of PS NPs in environmental waters make it possible to monitor the pollution status of NPs in aquatic systems and evaluate their potential risks.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Gas Chromatography-Mass Spectrometry , Nanoparticles/chemistry , Oxides , Polymethyl Methacrylate/analysis , Polystyrenes , Pyrolysis , Water Pollutants, Chemical/chemistry
19.
Sci Total Environ ; 834: 155427, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35469889

ABSTRACT

Water pollution by toxic heavy metals poses a threat to the environment and human bodies. Herein, a novel hydrated ferric oxide nanoparticle (HFO) based hybrid adsorbent was fabricated for the removal of toxic Cu(II), Cd(II) and Pb(II) from water. HFOs were immobilized into a porous resin D-201, and then this nanocomposite HFO-D201 was coated with humic acid (HA) to enhance the binding sites of target metals. Both HFOs and HA contribute to the sequestration of heavy metals. The as-synthesized hybrid adsorbent HA-HFO-D201 exhibited excellent performance on the removal of Cu(II), Cd(II), and Pb(II) in a pH range of 3-9, while no Fe leaching was observed. The presence of natural organic matter (20 mg C/L) has limited influences on the adsorption, and more than 85% of the target metals can be removed after treatment. HA-HFO-D201 showed preferable adsorption toward Cu(II) and Pb(II) (1 mg/L) from the background Ca2+ solution at much higher concentrations (100 mg/L), while the retention of Cd(II) (1 mg/L) decreased to some extent. Fixed-bed column experiments exhibited that the treatment capacities of HA-HFO-D201 are 90 bed volumes (BV) for Cd(II), 410 BV for Pb(II) and > 800 BV for Cu(II) of simulated contaminated water to meet the WHO drinking water standard. Meanwhile, depleted HA-HFO-D201 can be readily regenerated by a chelating agent Na2EDTA for repeated use. The hybrid adsorbent HA-HFO-D201 has excellent potential to remove heavy metals in water treatment systems.


Subject(s)
Metals, Heavy , Nanocomposites , Water Pollutants, Chemical , Water Purification , Adsorption , Cadmium , Ferric Compounds , Humans , Humic Substances , Lead , Oxides , Polymers/chemistry , Water Pollutants, Chemical/analysis
20.
Chem Commun (Camb) ; 58(17): 2834-2837, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35137767

ABSTRACT

Borophosphates are an ideal material class for the design of deep-UV optical functional crystals, yet their practical applications are limited by their small birefringence. Herein, a new mixed-coordinated borophosphate, NH4(B6PO10(OH)4)·H2O, has been successfully designed and synthesized, which exhibits the largest birefringence of all reported borophosphates.

SELECTION OF CITATIONS
SEARCH DETAIL