Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
1.
Mol Pharm ; 21(5): 2081-2096, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38630656

ABSTRACT

Small interfering RNAs (siRNAs) are promising therapeutic strategies, and five siRNA drugs have been approved by the Food and Drug Administration (FDA) and the European Commission (EC). This marks a significant milestone in the development of siRNA for clinical applications. The approved siRNA agents can effectively deliver siRNAs to the liver and treat liver-related diseases. Currently, researchers have developed diverse delivery platforms for transporting siRNAs to different tissues such as the brain, lung, muscle, and others, and a large number of siRNA drugs are undergoing clinical trials. Here, these delivery technologies and the latest advancements in clinical applications are summarized, and this Review provides a concise overview of the strategies employed for siRNA delivery to both hepatic and extrahepatic tissues.


Subject(s)
RNA, Small Interfering , RNA, Small Interfering/administration & dosage , Humans , Animals , Drug Delivery Systems/methods , Gene Transfer Techniques , Liver/metabolism , RNA Interference , Nanoparticles/chemistry , United States Food and Drug Administration , Clinical Trials as Topic
2.
Int J Mol Sci ; 25(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542270

ABSTRACT

Soybean (Glycine max) plants first emerged in China, and they have since been established as an economically important oil crop and a major source of daily protein for individuals throughout the world. Seed emergence height is the first factor that ensures seedling adaptability to field management practices, and it is closely related to epicotyl length. In the present study, the Suinong 14 and ZYD00006 soybean lines were used as parents to construct chromosome segment substitution lines (CSSLs) for quantitative trait loci (QTL) identification. Seven QTLs were identified using two years of epicotyl length measurement data. The insertion region of the ZYD00006 fragment was identified through whole genome resequencing, with candidate gene screening and validation being performed through RNA-Seq and qPCR, and Glyma.08G142400 was ultimately selected as an epicotyl length-related gene. Through combined analyses of phenotypic data from the study population, Glyma.08G142400 expression was found to be elevated in those varieties exhibiting longer epicotyl length. Haplotype data analyses revealed that epicotyl data were consistent with haplotype typing. In summary, the QTLs found to be associated with the epicotyl length identified herein provide a valuable foundation for future molecular marker-assisted breeding efforts aimed at improving soybean emergence height in the field, with the Glyma.08G142400 gene serving as a regulator of epicotyl length, offering new insight into the mechanisms that govern epicotyl development.


Subject(s)
Glycine max , Quantitative Trait Loci , Humans , Glycine max/genetics , Chromosome Mapping , Plant Breeding , Seeds/metabolism , Data Mining
3.
J Transl Med ; 22(1): 297, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38515161

ABSTRACT

BACKGROUND: The aberrant secretion and excessive deposition of type I collagen (Col1) are important factors in the pathogenesis of myocardial fibrosis in dilated cardiomyopathy (DCM). However, the precise molecular mechanisms underlying the synthesis and secretion of Col1 remain unclear. METHODS AND RESULTS: RNA-sequencing analysis revealed an increased HtrA serine peptidase 1 (HTRA1) expression in patients with DCM, which is strongly correlated with myocardial fibrosis. Consistent findings were observed in both human and mouse tissues by immunoblotting, quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunohistochemistry, and immunofluorescence analyses. Pearson's analysis showed a markedly positive correlation between HTRA1 level and myocardial fibrosis indicators, including extracellular volume fraction (ECV), native T1, and late gadolinium enhancement (LGE), in patients with DCM. In vitro experiments showed that the suppression of HTRA1 inhibited the conversion of cardiac fibroblasts into myofibroblasts and decreased Col1 secretion. Further investigations identified the role of HTRA1 in promoting the formation of endoplasmic reticulum (ER) exit sites, which facilitated the transportation of Col1 from the ER to the Golgi apparatus, thereby increasing its secretion. Conversely, HTRA1 knockdown impeded the retention of Col1 in the ER, triggering ER stress and subsequent induction of ER autophagy to degrade misfolded Col1 and maintain ER homeostasis. In vivo experiments using adeno-associated virus-serotype 9-shHTRA1-green fluorescent protein (AAV9-shHTRA1-GFP) showed that HTRA1 knockdown effectively suppressed myocardial fibrosis and improved left ventricular function in mice with DCM. CONCLUSIONS: The findings of this study provide valuable insights regarding the treatment of DCM-associated myocardial fibrosis and highlight the therapeutic potential of targeting HTRA1-mediated collagen secretion.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Animals , Humans , Mice , Collagen Type I , Contrast Media , Fibrosis , Gadolinium , Myocardium/pathology
4.
Article in English | MEDLINE | ID: mdl-38457025

ABSTRACT

Colorectal cancer (CRC) is the fourth most common cancer in the world, with the second highest incidence rate after lung cancer. Oxaliplatin (OXA) is a broad-spectrum anti-tumor agent with significant therapeutic efficacy in colorectal cancer, and as a divalent platinum analog, it is not selective in its distribution in the body and has systemic toxicity with continued use. Interleukin-12 (IL12) is an immunostimulatory cytokine with cytokine monotherapy that has made advances in the fight against cancer, limiting the clinical use of cytokines due to severe toxicity. Here, we introduced a long alkyl chain and N-methyl-2,2-diaminodiethylamine to the ligand of OXA to obtain OXA-LIP, which effectively reduces its toxicity and improves the uptake of the drug by tumor cells. We successfully constructed IL12 mRNA and used LNPs to deliver IL12 mRNA, and in vivo pharmacodynamic studies demonstrated that OXA-LIP combined with IL12 mRNA had better tumor inhibition and higher biosafety. In addition, it was investigated by pharmacokinetic experiments that the OXA-LIP drug could accumulate in nude mice at the tumor site, which prolonged the half-life and enhanced the anti-tumor efficiency of OXA. It is hoped that these results will provide an important reference for the subsequent research and development of OXA-LIP with IL12 mRNA, as well as provide new therapeutic approaches for the treatment of colon cancer.

5.
MedComm (2020) ; 5(2): e481, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38344397

ABSTRACT

Drug development is a long and costly process, with a high degree of uncertainty from the identification of a drug target to its market launch. Targeted drugs supported by human genetic evidence are expected to enter phase II/III clinical trials or be approved for marketing more quickly, speeding up the drug development process. Currently, genetic data and technologies such as genome-wide association studies (GWAS), whole-exome sequencing (WES), and whole-genome sequencing (WGS) have identified and validated many potential molecular targets associated with diseases. This review describes the structure, molecular biology, and drug development of human genetics-based validated beneficial loss-of-function (LOF) mutation targets (target mutations that reduce disease incidence) over the past decade. The feasibility of eight beneficial LOF mutation targets (PCSK9, ANGPTL3, ASGR1, HSD17B13, KHK, CIDEB, GPR75, and INHBE) as targets for drug discovery is mainly emphasized, and their research prospects and challenges are discussed. In conclusion, we expect that this review will inspire more researchers to use human genetics and genomics to support the discovery of novel therapeutic drugs and the direction of clinical development, which will contribute to the development of new drug discovery and drug repurposing.

6.
Int J Biol Sci ; 20(1): 29-46, 2024.
Article in English | MEDLINE | ID: mdl-38164183

ABSTRACT

Background: Thoracic aortic dissection (TAD) is one of the cardiovascular diseases with high incidence and fatality rates. Vascular smooth muscle cells (VSMCs) play a vital role in TAD formation. Recent studies have shown that extracellular S100A4 may participate in VSMCs regulation. However, the mechanism(s) underlying this association remains elusive. Consequently, this study investigated the role of S100A4 in VSMCs regulation and TAD formation. Methods: Hub genes were screened based on the transcriptome data of aortic dissection in the Gene Expression Synthesis database. Three-week-old male S100A4 overexpression (AAV9- S100A4 OE) and S100A4 knockdown (AAV9- S100A4 KD) mice were exposed to ß-aminopropionitrile monofumarate through drinking water for 28 days to create the murine TAD model. Results: S100A4 was observed to be the hub gene in aortic dissection. Furthermore, overexpression of S100A4 was exacerbated, whereas inhibition of S100A4 significantly improved TAD progression. In the TAD model, the S100A4 was observed to aggravate the phenotypic transition of VSMCs. Additionally, lysyl oxidase (LOX) was an important target of S100A4 in TAD. S100A4 interacted with LOX in VSMCs, reduced mature LOX (m-LOX), and decreased elastic fiber deposition, thereby disrupting extracellular matrix homeostasis and promoting TAD development. Elastic fiber deposition in human aortic tissues was negatively correlated with the expression of S100A4, which in turn, was negatively correlated with LOX. Conclusions: Our data showed that S100A4 modulates TADprogression, induces lysosomal degradation of m-LOX, and reduces the deposition of elastic fibers by interacting with LOX, thus contributing to the disruption of extracellular matrix homeostasis in TAD. These findings suggest that S100A4 may be a new target for the prevention and treatment of TAD.


Subject(s)
Aortic Dissection , Dissection, Thoracic Aorta , Male , Humans , Mice , Animals , Aortic Dissection/genetics , Aorta , Extracellular Matrix , S100 Calcium-Binding Protein A4/genetics
7.
Int J Biol Macromol ; 254(Pt 1): 127696, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37913874

ABSTRACT

A feature of the Chinese soft-shelled turtle (Pelodiscus sinensis) is seasonal spermatogenesis; however, the underlying molecular mechanism is not well clarified. Here, we firstly cloned and characterized P. sinensis DKKL1, and then performed comparative genomic studies, expression analysis, and functional validation. P. sinensis DKKL1 had 2 putative N-glycosylation sites and 16 phosphorylation sites. DKKL1 also had classic transmembrane structures that were extracellularly localized. DKKL1's genetic distance was close to turtles, followed by amphibians and mammals, but its genetic distance was far from fishes. DKKL1 genes from different species shared distinct genomic characteristics. Meanwhile, they were also relatively conserved among themselves, at least from the perspective of classes. Notably, the transcription factors associated with spermatogenesis were also identified, containing CTCF, EWSR1, and FOXL2. DKKL1 exhibited sexually dimorphic expression only in adult gonads, which was significantly higher than that in other somatic tissues (P < 0.001), and was barely expressed in embryonic gonads. DKKL1 transcripts showed a strong signal in sperm, while faint signals were detected in other male germ cells. DKKL1 in adult testes progressively increased per month (P < 0.05), displaying a seasonal expression trait. DKKL1 was significantly downregulated in testes cells after the sex hormones (17ß-estradiol and 17α-methyltestosterone) and Wnt/ß-catenin inhibitor treatment (P < 0.05). Likewise, the Wnt/ß-catenin inhibitor treatment dramatically repressed CTCF, EWSR1, and FOXL2 expression. Conversely, they were markedly upregulated after the 17ß-estradiol and 17α-methyltestosterone treatment, suggesting that the three transcription factors might bind to different promoter regions, thereby negatively regulating DKKL1 transcription in response to the changes in the estrogen and androgen pathways, and positively controlling DKKL1 transcription in answer to the alterations in the Wnt/ß-catenin pathway. Knockdown of DKKL1 significantly reduced the relative expression of HMGB2 and SPATS1 (P < 0.01), suggesting that it may be involved in seasonal spermatogenesis of P. sinensis through a positive regulatory interaction with these two genes. Overall, our findings provide novel insights into the genome evolution and potential functions of seasonal spermatogenesis of P. sinensis DKKL1.


Subject(s)
Turtles , Animals , Male , Turtles/genetics , Turtles/metabolism , beta Catenin/metabolism , Methyltestosterone/metabolism , Semen , Spermatogenesis/genetics , Estradiol/metabolism , Genomics , Mammals
8.
Mol Cancer Ther ; 23(2): 148-158, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37988561

ABSTRACT

Interleukin 35(IL-35) is a newly discovered inhibitory cytokine of the IL12 family. More recently, IL-35 was found to be increased in the tumor microenvironment (TME) and peripheral blood of many patients with cancer, indicating that it plays an important role in the TME. Tumors secrete cytokines that recruit myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Treg) into the TME to promote malignant progression, which is a great challenge for cancer treatment. Radiotherapy causes serious adverse effects, and tumor resistance to immune checkpoint inhibitors is still an unsolved challenge. Thus, new cancer therapy approaches are urgently needed. Numerous studies have shown that IL-35 can recruit immunosuppressive cells to enable tumor immune escape by promoting the conversion of immune cells into a tumor growth-promoting phenotype as well as facilitating tumor angiogenesis. IL-35-neutralizing antibodies were found to boost the chemotherapeutic effect of gemcitabine and considerably reduce the microvascular density of pancreatic cancer in mice. Therefore, targeting IL-35 in the TME provides a promising cancer treatment target. In addition, IL-35 may be used as an independent prognostic factor for some tumors in the near future. This review intends to reveal the interplay of IL-35 with immune cells in the TME, which may provide new options for the treatment of cancer.


Subject(s)
Neoplasms , Pancreatic Neoplasms , Humans , Mice , Animals , Tumor Microenvironment , Immunotherapy , Neoplasms/drug therapy , Cytokines/pharmacology , Interleukins
9.
Acta Pharm Sin B ; 13(12): 4823-4839, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38045047

ABSTRACT

Clinical application of doxorubicin (DOX) is heavily hindered by DOX cardiotoxicity. Several theories were postulated for DOX cardiotoxicity including DNA damage and DNA damage response (DDR), although the mechanism(s) involved remains to be elucidated. This study evaluated the potential role of TBC domain family member 15 (TBC1D15) in DOX cardiotoxicity. Tamoxifen-induced cardiac-specific Tbc1d15 knockout (Tbc1d15CKO) or Tbc1d15 knockin (Tbc1d15CKI) male mice were challenged with a single dose of DOX prior to cardiac assessment 1 week or 4 weeks following DOX challenge. Adenoviruses encoding TBC1D15 or containing shRNA targeting Tbc1d15 were used for Tbc1d15 overexpression or knockdown in isolated primary mouse cardiomyocytes. Our results revealed that DOX evoked upregulation of TBC1D15 with compromised myocardial function and overt mortality, the effects of which were ameliorated and accentuated by Tbc1d15 deletion and Tbc1d15 overexpression, respectively. DOX overtly evoked apoptotic cell death, the effect of which was alleviated and exacerbated by Tbc1d15 knockout and overexpression, respectively. Meanwhile, DOX provoked mitochondrial membrane potential collapse, oxidative stress and DNA damage, the effects of which were mitigated and exacerbated by Tbc1d15 knockdown and overexpression, respectively. Further scrutiny revealed that TBC1D15 fostered cytosolic accumulation of the cardinal DDR element DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Liquid chromatography-tandem mass spectrometry and co-immunoprecipitation denoted an interaction between TBC1D15 and DNA-PKcs at the segment 594-624 of TBC1D15. Moreover, overexpression of TBC1D15 mutant (∆594-624, deletion of segment 594-624) failed to elicit accentuation of DOX-induced cytosolic retention of DNA-PKcs, DNA damage and cardiomyocyte apoptosis by TBC1D15 wild type. However, Tbc1d15 deletion ameliorated DOX-induced cardiomyocyte contractile anomalies, apoptosis, mitochondrial anomalies, DNA damage and cytosolic DNA-PKcs accumulation, which were canceled off by DNA-PKcs inhibition or ATM activation. Taken together, our findings denoted a pivotal role for TBC1D15 in DOX-induced DNA damage, mitochondrial injury, and apoptosis possibly through binding with DNA-PKcs and thus gate-keeping its cytosolic retention, a route to accentuation of cardiac contractile dysfunction in DOX-induced cardiotoxicity.

10.
JACC Basic Transl Sci ; 8(9): 1215-1239, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37791317

ABSTRACT

Mitochondrial dysfunction is suggested to be a major contributor for the progression of heart failure (HF). Here we examined the role of syntaxin 17 (STX17) in the progression of HF. Cardiac-specific Stx17 knockout manifested cardiac dysfunction and mitochondrial damage, associated with reduced levels of p(S616)-dynamin-related protein 1 (DRP1) in mitochondria-associated endoplasmic reticulum membranes and dampened mitophagy. Cardiac STX17 overexpression promoted DRP1-dependent mitophagy and attenuated transverse aortic constriction-induced contractile and mitochondrial damage. Furthermore, STX17 recruited cyclin-dependent kinase-1 through its SNARE domain onto mitochondria-associated endoplasmic reticulum membranes, to phosphorylate DRP1 at Ser616 and promote DRP1-mediated mitophagy upon transverse aortic constriction stress. These findings indicate the potential therapeutic benefit of targeting STX17 in the mitigation of HF.

11.
Abdom Radiol (NY) ; 48(10): 3127-3134, 2023 10.
Article in English | MEDLINE | ID: mdl-37439840

ABSTRACT

OBJECTIVE: To investigate the diagnostic value of early dynamic 18F-FDG PET/CT(ED 18F-FDG PET/CT) combined with conventional whole-body 18F-FDG PET/CT(WB 18F-FDG PET/CT) in hepatocellular carcinoma (HCC), as well as the difference of early dynamic blood flow parameters and maximum standardized uptake value (SUVmax) in HCC patients with/without liver cirrhosis or microvascular invasion (MVI). METHODS: Twenty-two consecutive patients (mean age 57.8 years) with 28 established HCC lesions (mean size 4.5 cm) underwent a blood flow study with an 18F-FDG dynamic scan divided into 24 sequences of 5 s each and a standard PET/CT scan. On the ED PET/CT study, an experienced PET/CT physician obtained volumes of interest (VOIs) where three blood flow estimates (time to peak [TTP], blood flow [BF], and hepatic perfusion index [HPI]) were calculated. On the WB PET/CT study, a VOI was placed on the fused scan for each HCC and maximum standardized uptake value (SUVmax) was obtained. Comparison of blood flow estimates, SUVmax, and tumor/background ratio (TNR) was performed among HCCs with and without angioinvasion, as well as HCCs in cirrhotic and non-cirrhotic liver. RESULTS: Compared with WB 18F-FDG PET/CT alone, ED combined with WB 18F-FDG PET/CT can significantly increase the detection rate of moderately differentiated and poorly differentiated HCCs (both P < 0.05). HPI was higher in HCCs in patients with liver cirrhosis than those without liver cirrhosis (P = 0.044). There was no significant difference in TTP, BF, SUVmax, or TNR between HCCs in patients with liver cirrhosis and those without liver cirrhosis. There was no significant difference in blood flow estimates or SUVmax in background liver parenchyma between patients with and those without cirrhosis. TTP was shorter in HCCs with MVI than without MVI (P = 0.046). There was no significant difference in BF, HPI, SUVmax, or TNR between HCCs with MVI and without MVI. There was no significant difference in blood flow estimates or SUVmax in background liver parenchyma between patients with and those without MVI. CONCLUSION: ED combined with WB 18F-FDG PET/CT can significantly increase the detection rate of moderately differentiated and poorly differentiated HCCs. HPI was significantly higher in HCCs in patients with liver cirrhosis than those without liver cirrhosis. TTP was significantly shorter in HCCs with MVI than without MVI.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Middle Aged , Carcinoma, Hepatocellular/pathology , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Liver Neoplasms/pathology , Radiopharmaceuticals , Positron-Emission Tomography , Liver Cirrhosis
12.
Quant Imaging Med Surg ; 13(6): 3587-3601, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37284121

ABSTRACT

Background: Knee osteoarthritis (OA) is harmful to people's health. Effective treatment depends on accurate diagnosis and grading. This study aimed to assess the performance of a deep learning (DL) algorithm based on plain radiographs in detecting knee OA and to investigate the effect of multiview images and prior knowledge on diagnostic performance. Methods: In total, 4,200 paired knee joint X-ray images from 1,846 patients (July 2017 to July 2020) were retrospectively analyzed. Kellgren-Lawrence (K-L) grading was used as the gold standard for knee OA evaluation by expert radiologists. The DL method was used to analyze the performance of anteroposterior and lateral plain radiographs combined with prior zonal segmentation to diagnose knee OA. Four groups of DL models were established according to whether they adopted multiview images and automatic zonal segmentation as the DL prior knowledge. Receiver operating curve analysis was used to assess the diagnostic performance of 4 different DL models. Results: The DL model with multiview images and prior knowledge obtained the best classification performance among the 4 DL models in the testing cohort, with a microaverage area under the receiver operating curve (AUC) and macroaverage AUC of 0.96 and 0.95, respectively. The overall accuracy of the DL model with multiview images and prior knowledge was 0.96 compared to 0.86 for an experienced radiologist. The combined use of anteroposterior and lateral images and prior zonal segmentation affected diagnostic performance. Conclusions: The DL model accurately detected and classified the K-L grading of knee OA. Additionally, multiview X-ray images and prior knowledge improved classification efficacy.

13.
Front Oncol ; 13: 1185991, 2023.
Article in English | MEDLINE | ID: mdl-37284198

ABSTRACT

Background/objective: We retrospectively analyzed the effective and safety of continuous low-dose cyclophosphamide combined with prednisone (CP) in relapsed and refractory multiple myeloma (RRMM) patients with severe complications. Methods: A total of 130 RRMM patients with severe complications were enrolled in this study, among which 41 patients were further given bortezomib, lenalidomide, thalidomide or ixazomib on the basis of CP regimen (CP+X group). The response to therapy, adverse events (AEs), overall survival (OS) and progression-free survival (PFS) were recorded. Results: Among the 130 patients, 128 patients received therapeutic response assessment, with a complete remission rate (CRR) and objective response rate (ORR) of 4.7% and 58.6%, respectively. The median OS and PFS time were (38.0 ± 3.6) and (22.9±5.2) months, respectively. The most common AEs were hyperglycemia (7.7%), pneumonia (6.2%) and Cushing's syndrome (5.4%). In addition, we found the pro-BNP/BNP level was obviously decreased while the LVEF (left ventricular ejection fraction) was increased in RRMM patients following CP treatment as compared with those before treatment. Furthermore, CP+X regimen further improved the CRR compared with that before receiving the CP+X regimen (24.4% vs. 2.4%, P=0.007). Also, both the OS and PFS rates were significantly elevated in patients received CP+X regimen following CP regimen as compared with the patients received CP regimen only. Conclusion: This study demonstrates the metronomic chemotherapy regimen of CP is effective to RRMM patients with severe complications.

14.
Sheng Li Xue Bao ; 75(3): 465-474, 2023 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-37340654

ABSTRACT

Primary dysmenorrhea (PDM), cyclic menstrual pain in the absence of pelvic anomalies, is characterized by acute and chronic gynecological pain disorders in childbearing age women. PDM strongly affects the quality of life of patients and leads to economic losses. PDM generally do not receive radical treatment and often develop into other chronic pain disorders later in life. The clinical treatment status of PDM, the epidemiology of PDM and chronic pain comorbidities, and the abnormal physiological and psychological characteristics of patients with PDM suggest that PDM not only is related to the inflammation around the uterus, but also may be related to the abnormal pain processing and regulation function of patients' central system. Therefore, exploring the brain neural mechanism of PDM is indispensable and important to understand the pathological mechanism of PDM, and is also a hotspot of brain science research in recent years, which will bring new inspiration to explore the target of PDM intervention. Based on the progress of the neural mechanism of PDM, this paper systematically summarizes the evidence from neuroimaging and animal model studies.


Subject(s)
Chronic Pain , Dysmenorrhea , Animals , Humans , Female , Brain Mapping , Quality of Life , Neuroimaging , Models, Animal
15.
Curr Dev Nutr ; 7(5): 100076, 2023 May.
Article in English | MEDLINE | ID: mdl-37180852

ABSTRACT

Background: The fermentation of undigested material in the ileum is quantitatively important. However, the respective contributions of the microbial composition and the substrate to ileal fermentation are unclear. Objective: This aim was to investigate the contribution of microbial composition and fiber source to in vitro ileal fermentation outcomes. Methods: Thirteen ileal cannulated female pigs (Landrace/Large White; 9-wk-old; 30.5 kg body weight) were given diets containing black beans, wheat bread, chickpeas, peanuts, pigeon peas, sorghum, or wheat bran as the sole protein source for 7 d (100 g protein/kg dry matter diet). On day 7, ileal digesta were collected and stored at -80°C for microbial analysis and in vitro fermentation. For each diet, a pooled ileal inoculum was prepared to ferment different fiber sources (cellulose, pectin, arabinogalactan, inulin, fructooligosaccharides, and resistant starch) for 2 h at 37°C. Organic matter fermentability and organic acid production were determined following in vitro fermentation. Data were analyzed using a 2-way ANOVA (inoculum × fiber). Results: Forty-five percent of the identified genera in the digesta differed across diets. For instance, the number of Lactococcus was 115-fold greater (P ≤ 0.05) in the digesta of pigs fed the pigeon pea diet than for pigs fed the wheat bran diet. For both in vitro organic matter fermentability and organic acid production, there were significant (P ≤ 0.05) interactions between the inoculum and the fiber source. For instance, pectin and resistant starch resulted in 1.6- to 31-fold more (P ≤ 0.05) lactic acid production when fermented by the pigeon pea inoculum than other inocula. For specific fiber sources, statistically significant correlations were found between the number of bacteria from certain members of the ileal microbial community and fermentation outcomes. Conclusions: Both the fiber source fermented and the ileal microbial composition of the growing pig affected in vitro fermentation; however, the effect of the fiber source was predominant.Curr Dev Nutr 2023;x:xx.

16.
Int Immunopharmacol ; 118: 110070, 2023 May.
Article in English | MEDLINE | ID: mdl-37003186

ABSTRACT

Rationale Idiopathic pulmonary fibrosis (IPF) is a lung disease with high mortality, limited treatment options and an unknown aetiology. M2 macrophages play a critical role in the pathological process of IPF. Triggering receptor expressed on myeloid cells-2 (TREM2) participates in the regulation of macrophages, although its role in IPF remains elusive. METHODS: This study examined the role of TREM2 in macrophage regulation using a well-established bleomycin (BLM)-induced pulmonary fibrosis (PF) mouse model. TREM2 insufficiency was induced by intratracheal treatment with TREM2-specific siRNA. The effects of TREM2 on IPF were evaluated using histological staining and molecular biological methods. RESULTS: TREM2 expression levels were significantly elevated in the lungs of IPF patients and mice with BLM-induced pulmonary fibrosis mice. Bioinformatics analysis revealed that IPF patients with higher TREM2 expression had a shorter survival time, and that TREM2 expression was closely associated with fibroblasts and M2 macrophages. Gene Ontology (GO) enrichment analysis showed that found TREM2-related differentially expressed genes (DEGs) were associated with inflammatory responses, extracellular matrix (ECM) and collagen formation. Single-cell RNA sequencing analysis revealed that TREM2 was predominantly expressed in macrophages. TREM2 insufficiency inhibited BLM-induced pulmonary fibrosis and M2 macrophage polarization. Mechanistic studies showed that TREM2 insufficiency suppressed the activation of STAT6 and the expression of fibrotic factors such as Fibronectin (Fib), Collagen I (Col I) and α- smooth muscle actin (α-SMA). CONCLUSION: Our study showed that TREM2 insufficiency might alleviate pulmonary fibrosis possibly through macrophage polarization regulation via STAT6 activation, providing a promising macrophage-related approach for the clinical therapy of pulmonary fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung , Mice , Animals , Lung/pathology , Idiopathic Pulmonary Fibrosis/genetics , Bleomycin/metabolism , Macrophages/metabolism , Collagen Type I/metabolism , Mice, Inbred C57BL , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
17.
J Mater Chem B ; 11(16): 3740-3751, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37067505

ABSTRACT

Extracellular matrices decellularized from marine animal tissues are emerging scaffolds in tissue engineering. Jellyfish tissues are suitable for making functional and safe decellularized matrices in part due to their simple structure, high water content, and low risk of pathogen transmission to humans. Jellyfish are some of the most prevalent marine animals, but their decellularized matrices have remained largely undeveloped. Here we evaluated the structures and functions of the jellyfish (Rhopilema esculentum) matrices decellularized with seven different detergents. All of them showed effectiveness in removing the cellular components. Scanning electron microscopy and mechanical testing revealed that the decellularized matrices mostly retained the native microstructures, whereas only SDS and SNL distorted the matrices' multilayered and fibrous architecture. The collagen hybridizing peptide fluorescence staining showed that SDS, SNL, Triton X-100, IGEPAL, and Tween-20 denatured the jellyfish collagen molecules to varying degrees while CHAPS and SD protected the collagen's triple-helix conformation. We demonstrated that the decellularized jellyfish matrices showed similarity to different types of mammalian collagen and supported the adhesion and proliferation of human dermal and corneal fibroblasts and mouse chondrocytes in 3D culture. Importantly, the decellularized jellyfish matrix also facilitated wound healing in vivo by reducing inflammation while promoting angiogenesis and tissue remodeling. Taken together, our study demonstrated that the decellularized jellyfish matrices are an easy-to-prepare, biocompatible, and potentially widely applicable scaffold for regenerative medicine.


Subject(s)
Collagen , Extracellular Matrix , Animals , Mice , Humans , Collagen/chemistry , Extracellular Matrix/chemistry , Wound Healing , Tissue Engineering , Octoxynol/analysis , Mammals
18.
Foods ; 12(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36900531

ABSTRACT

Pectins are complex polysaccharides that are widely found in plant cells and have a variety of bioactivities. However, the high molecular weights (Mw) and complex structures of natural pectins mean that they are difficult for organisms to absorb and utilize, limiting their beneficial effects. The modification of pectins is considered to be an effective method for improving the structural characteristics and promoting the bioactivities of pectins, and even adding new bioactivities to natural pectins. This article reviews the modification methods, including chemical, physical, and enzymatic methods, for natural pectins from the perspective of their basic information, influencing factors, and product identification. Furthermore, the changes caused by modifications to the bioactivities of pectins are elucidated, including their anti-coagulant, anti-oxidant, anti-tumor, immunomodulatory, anti-inflammatory, hypoglycemic, and anti-bacterial activities and the ability to regulate the intestinal environment. Finally, suggestions and perspectives regarding the development of pectin modification are provided.

19.
J Am Heart Assoc ; 12(7): e028628, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36974751

ABSTRACT

Background Pathological cardiac hypertrophy is regarded as a critical precursor and independent risk factor of heart failure, and its inhibition prevents the progression of heart failure. Switch-associated protein 70 (SWAP70) is confirmed important in immunoregulation, cell maturation, and cell transformation. However, its role in pathological cardiac hypertrophy remains unclear. Methods and Results The effects of SWAP70 on pathological cardiac hypertrophy were investigated in Swap70 knockout mice and Swap70 overexpression/knockdown cardiomyocytes. Bioinformatic analysis combined with multiple molecular biological methodologies were adopted to elucidate the mechanisms underlying the effects of SWAP70 on pathological cardiac hypertrophy. Results showed that SWAP70 protein levels were significantly increased in failing human heart tissues, experimental transverse aortic constriction-induced mouse hypertrophic hearts, and phenylephrine-stimulated isolated primary cardiomyocytes. Intriguingly, phenylephrine treatment decreased the lysosomal degradation of SWAP70 by disrupting the interaction of SWAP70 with granulin precursor. In vitro and in vivo experiments revealed that Swap70 knockdown/knockout accelerated the progression of pathological cardiac hypertrophy, while Swap70 overexpression restrained the cardiomyocyte hypertrophy. SWAP70 restrained the binding of transforming growth factor ß-activated kinase 1 (TAK1) and TAK1 binding protein 1, thus blocking the phosphorylation of TAK1 and downstream c-Jun N-terminal kinase/P38 signaling. TAK1 interacted with the N-terminals (1-192) of SWAP70. Swap70 (193-585) overexpression failed to inhibit cardiac hypertrophy when the TAK1-SWAP70 interaction was disrupted. Either inhibiting the phosphorylation or suppressing the expression of TAK1 rescued the exaggerated cardiac hypertrophy induced by Swap70 knockdown. Conclusions SWAP70 suppressed the progression of cardiac hypertrophy, possibly by inhibiting the mitogen-activated protein kinases signaling pathway in a TAK1-dependent manner, and lysosomes are involved in the regulation of SWAP70 expression level.


Subject(s)
Cardiomegaly , Heart Failure , Animals , Humans , Mice , Cardiomegaly/genetics , Cardiomegaly/prevention & control , Cardiomegaly/metabolism , DNA-Binding Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Heart Failure/genetics , Heart Failure/prevention & control , Heart Failure/metabolism , Mice, Knockout , Minor Histocompatibility Antigens/metabolism , Myocytes, Cardiac/metabolism , Nuclear Proteins/metabolism , Phenylephrine/pharmacology , Signal Transduction
20.
J Nanobiotechnology ; 21(1): 104, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36964516

ABSTRACT

Non-small cell lung cancer (NSCLC) is the most common pathological type of LC and ranks as the leading cause of cancer deaths. Circulating exosomes have emerged as a valuable biomarker for the diagnosis of NSCLC, while the performance of current electrochemical assays for exosome detection is constrained by unsatisfactory sensitivity and specificity. Here we integrated a ratiometric biosensor with an OR logic gate to form an assay for surface protein profiling of exosomes from clinical serum samples. By using the specific aptamers for recognition of clinically validated biomarkers (EpCAM and CEA), the assay enabled ultrasensitive detection of trace levels of NSCLC-derived exosomes in complex serum samples (15.1 particles µL-1 within a linear range of 102-108 particles µL-1). The assay outperformed the analysis of six serum biomarkers for the accurate diagnosis, staging, and prognosis of NSCLC, displaying a diagnostic sensitivity of 93.3% even at an early stage (Stage I). The assay provides an advanced tool for exosome quantification and facilitates exosome-based liquid biopsies for cancer management in clinics.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Electrochemistry , Exome , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/diagnosis , Biosensing Techniques , Limit of Detection , Blood Chemical Analysis/methods , Blood Chemical Analysis/standards , Humans , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...