Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 21088, 2024 09 10.
Article in English | MEDLINE | ID: mdl-39256411

ABSTRACT

Slow Transit Constipation (STC) is characterized by impaired colonic motility, but its relationship with gut microbiota remains unclear. This study investigated the correlation between specific gut microbial populations and STC, focusing on the Lactobacillus acidophilus to Lactobacillus johnsonii (A/J) ratio. We used four rat groups: Control (CON), Loperamide-induced STC (LOP), antibiotic-treated (ABX), and antibiotic plus Loperamide (ABX + LOP). Fecal samples were analyzed using 16S rRNA gene sequencing, and serum metabolites were examined through LC-MS. The LOP group showed an increased A/J ratio, while ABX and ABX + LOP groups had decreased ratios. Notably, the ABX + LOP group did not develop STC symptoms. Metabolomic analysis revealed alterations in key metabolites across groups, including changes in levels of guanidinoacetate, glycine, L-glutamine, nicotine, and nicotinate D-ribonucleotide in the LOP group, and variations in L-glutamine, L-phenylalanine, L-tyrosine, histamine, D-ornithine, and lecithin in the ABX and ABX + LOP groups. Our findings suggest a correlation between the A/J ratio and STC development, offering insights into STC pathophysiology and potential microbiome-targeted therapies.


Subject(s)
Constipation , Gastrointestinal Microbiome , Lactobacillus acidophilus , Loperamide , Animals , Constipation/microbiology , Rats , Gastrointestinal Microbiome/drug effects , Male , Feces/microbiology , RNA, Ribosomal, 16S/genetics , Rats, Sprague-Dawley , Lactobacillus , Gastrointestinal Transit , Disease Models, Animal , Metabolomics/methods , Anti-Bacterial Agents/pharmacology
2.
Drug Des Devel Ther ; 18: 307-324, 2024.
Article in English | MEDLINE | ID: mdl-38328440

ABSTRACT

Aloe barbadensis Mill. has a long history of medicinal use in the annals of traditional Chinese medicine, wherein it has garnered considerable renown. Its multifaceted therapeutic properties, characterized by its anti-inflammatory and antibacterial attributes, alongside its established efficacy as a laxative agent, have been extensively documented. This review commences with an exploration of the nomenclature, fundamental characteristics, and principal constituents of Aloe barbadensis Mill. responsible for its laxative effects. Subsequently, we delve into an extensive examination of the molecular mechanisms underlying Aloe barbadensis Mill.'s laxative properties, types of constipation treatments, commercially available preparations, considerations pertaining to toxicity, and its clinical applications. This review aims to serve as a comprehensive reference point for healthcare professionals and researchers, fostering an enhanced understanding of the optimal utilization of Aloe barbadensis Mill. in the treatment of constipation.


Subject(s)
Aloe , Plant Extracts , Humans , Plant Extracts/therapeutic use , Laxatives/therapeutic use , Medicine, Chinese Traditional , Constipation/drug therapy
3.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276014

ABSTRACT

Levamisole (LVM) is considered an immunomodulatory agent that has the potential to treat various cancer and inflammation diseases. However, there is still much debate surrounding the toxicokinetic and toxicological information of LVM. Therefore, it is crucial to assess its toxicity to provide useful data for future human LVM risk assessments. In this study, a barrier environment was established under the guidance of good laboratory practice (GLP) at the Fujian Center for New Drug Safety Evaluation. Male beagle dogs were orally administered with 5, 15, and 30 mg/kg of LVM daily for four weeks. Toxicity assessment was based on various factors such as mortality, clinical signs, food and water consumption, body weight, body temperature, electrocardiogram, ophthalmological examination, hematology, serum biochemistry, organ/body coefficients, histopathological study, and toxicokinetic analysis. The results of this study showed that LVM did not exhibit any significant toxicological effects on beagle dogs at the exposure levels tested. A no observed adverse effect level (NOAEL) of LVM was set at 30 mg/kg/day for male beagle dogs, which is equivalent to a 12-fold clinical dose in humans. Moreover, the repeated exposure to LVM for four weeks did not lead to any bioaccumulation. These findings provide valuable insights for future human LVM risk assessments.

4.
Molecules ; 28(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37446714

ABSTRACT

Imidazothiazole derivatives are becoming increasingly important in therapeutic use due to their outstanding physiological activities. Recently, applying imidazothiazole as the core, researchers have synthesized a series of derivatives with biological effects such as antitumor, anti-infection, anti-inflammatory and antioxidant effects. In this review, we summarize the main pharmacological effects and pharmacological mechanisms of imidazothiazole derivates; the contents summarized herein are intended to advance the research and rational development of imidazothiazole-based drugs in the future.


Subject(s)
Thiazoles , Thiazoles/pharmacology
5.
ACS Appl Mater Interfaces ; 14(7): 8782-8792, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35138103

ABSTRACT

Chemoimmunotherapy can synergistically enhance the therapeutic effects and decrease the side effects by a combined method. However, the effective targeted codelivery of various chemotherapeutic agents and siRNAs remains challenging. Although nanomedicine-based chemoimmunotherapy has shown great potential in cancer treatment in recent years, further effort is needed to simplify the nanocarrier designs and maintain their effective functions. Here, we report a simple but robust multifunctional liposomal nanocarrier that contains a pH-sensitive liposome (LP) shell and a dendritic core for tumor-targeted codelivery of programmed cell death ligand 1 (PD-L1) siRNA and doxorubicin (DOX) (siPD-L1@PM/DOX/LPs). siPD-L1@PM/DOX/LPs had a suitable particle size and zeta potential, excellent stability in serum, and pH-sensitive drug release in vitro. They exhibited significant cell proliferation inhibition compared to free DOX and DOX-loaded LPs and could escape endosomes, effectively release siRNA into the cytoplasm of MCF-7 cells, and significantly reduce the PD-L1 expression on tumor cells. In vivo imaging confirmed high accumulation of siPD-L1@PM/DOX/LPs at the tumor site. More importantly, compared with siPD-L1@PM/LPs or DOX alone, siPD-L1@PM/DOX/LPs were more effective in inhibiting tumor growth and activating cytotoxic T cells in vivo. In conclusion, this nanocarrier may hold promise as a codelivery nanoplatform to improve the treatment of various solid tumors.


Subject(s)
Breast Neoplasms , Nanoparticles , B7-H1 Antigen/genetics , Breast Neoplasms/drug therapy , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Female , Humans , Liposomes , RNA, Small Interfering/therapeutic use
6.
Int J Pharm ; 605: 120829, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34174358

ABSTRACT

The objective of the present study was to prepare and evaluate a microemulsion-based hydrogel with high malleability as a transdermal delivery carrier for levamisole (LMS). A pseudo-ternary phase diagram and D-optimal mixture design were utilized to screen and optimize the microemulsion, and the formulation comprised 7.5% MaisineTM35-1, 33% Smix and 59.5% water. The microemulsion was physically stable with an average size of 19.3 ± 0.1 nm and zeta potential of -3.84 ± 0.05 mV. Moreover, a highly malleable alginate-boronic acid (alginate-BA) gel was prepared and could come into close contact with highly curved skin. The optimized microemulsion was loaded into alginate-BA gel and subjected to ex vivo and in vivo investigation. The microemulsion-based gel had desirable characterization, good stability and negligible skin irritation. The results of ex vivo permeation study showed that LMS achieved a significantly higher cumulative amount from the LMS-loaded microemulsion-based gel than that from the LMS-gel. The pharmacokinetic study showed a twofold increase in relative bioavailability compared to the commercial liniment. These results provide insight into the capability of the developed malleable microemulsion-based gel to enhance the transdermal permeation and bioavailability of LMS.


Subject(s)
Levamisole , Skin Absorption , Administration, Cutaneous , Emulsions/metabolism , Hydrogels/metabolism , Levamisole/metabolism , Skin/metabolism
7.
Pharmaceutics ; 13(5)2021 May 18.
Article in English | MEDLINE | ID: mdl-34069878

ABSTRACT

Rheumatoid arthritis (RA) is a chronic, inflammatory autoimmune disease that mainly erodes joints and surrounding tissues, and if it is not treated in time, it can cause joint deformities and loss of function. S-propargyl-cysteine (SPRC) is an excellent endogenous hydrogen sulfide donor which can relieve the symptoms of RA through the promotion of H2S release via the CSE/H2S pathway in vivo. However, the instant release of H2S in vivo could potentially limit its further clinical use. To solve this problem, in this study, a SPRC-loaded poly(lactic acid) (PLA) microsphere (SPRC@PLA) was prepared, which could release SPRC in vitro in a sustained manner, and further promote sustained in vivo H2S release. Furthermore, its therapeutical effect on RA in rats was also studied. A spherical-like SPRC@PLA was successfully prepared with a diameter of approximately 31.61 µm, yielding rate of 50.66%, loading efficiency of 6.10% and encapsulation efficiency of 52.71%. The SPRC@PLA showed significant prolonged in vitro SPRC release, to 4 days, and additionally, an in vivo H2S release around 3 days could also be observed. In addition, a better therapeutical effect and prolonged administration interval toward RA rats was also observed in the SPRC@PLA group.

8.
Cancer Sci ; 111(1): 72-83, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31691433

ABSTRACT

Capn4, also known as CapnS1, is a member of the calpain family, which plays a crucial role in maintaining the activity and function of calpain. We previously reported that Capn4 also plays an essential role in the migration of nasopharyngeal carcinoma (NPC) cells through regulation of (MMP-2) by nuclear factor-kappa B activation. Epstein-Barr virus latent membrane protein 1 (LMP1) is closely related to the malignant functions of NPC; however, the relationship between LMP1 and Capn4 in NPC remain unclear. Immunohistochemical studies showed that the level of LMP1 and Capn4 expression was high in both primary and metastatic NPC tissues, with a significantly positive correlation. We further found that LMP1 was able to upregulate the Capn4 promoter in a dose-dependent way through the C-terminal activation region (CTAR)1 and CTAR2 domains to activate AP-1. Moreover, we also found that LMP1 activated AP-1 through ERK/JNK phosphorylation. These findings indicate that Capn4 coordination with LMP1 promotes actin rearrangement and, ultimately, cellular migration. These results show that Capn4 coordination with LMP1 enhances NPC migration by increasing actin rearrangement involving ERK/JNK/AP-1 signaling. Therapeutically, additional and more specific LMP1 and Capn4 targeted inhibitors could be exploited to treat NPC.


Subject(s)
Calpain/genetics , MAP Kinase Signaling System/genetics , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/genetics , Neoplasm Metastasis/genetics , Transcription Factor AP-1/genetics , Viral Matrix Proteins/genetics , Cell Line, Tumor , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/virology , Gene Expression Regulation, Neoplastic/genetics , Herpesvirus 4, Human/pathogenicity , Humans , NF-kappa B/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/virology , Neoplasm Metastasis/pathology , Phosphorylation/genetics , Promoter Regions, Genetic/genetics , Signal Transduction/genetics , Up-Regulation/genetics
9.
Int J Pharm ; 571: 118717, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31610279

ABSTRACT

The fat-soluble vitamins lipid injectable emulsion, a parenteral supplement, commonly used for hospitalized patients to meet daily requirements of fat-soluble vitamins. This study attempts to reduce risk, improve the stability and safety of fat-soluble vitamins lipid injectable emulsion using a Quality by Design (QbD) approach. The quality target product profile and critical quality attributes were defined based on a comprehensive understanding of fat-soluble vitamins lipid injectable emulsions. The emulsions were prepared using a high-pressure homogenization method. Critical quality attributes (CQAs) were identified using risk assessment tools such as fishbone diagram and risk estimation matrix. The assay, mean droplet size, polydispersity index, zeta potential, and the volume-weighted percentage of fat greater than 5 µm (PFAT5) were identified as CQAs. Accordingly, three critical formulation and process parameters for the emulsions were the percentage of emulsifier, homogenization pressure, and homogenization recirculation. The design space was obtained via a design of experiment (DoE), and an optimum formulation was successfully prepared. All physicochemical attributes of the optimal formulation were within the design space (i.e., droplet size: 217.2 ±â€¯0.37 nm; polydispersity index: 0.115 ±â€¯0.012; PFAT5: less than 0.05%; zeta potential: -34.6 ±â€¯1.09 mV; and viscosity: 20.95 mPa at 0.1 s-1). The optimal formulation remained acceptable physicochemical stability at 25 ±â€¯2 °C/60% RH ±â€¯5% RH over a 12-month period. Safety of the optimal emulsion was evaluated as acceptable through the determination of lysophospholipid content and an in vitro hemolysis assay. In conclusion, an optimal lipid injectable emulsion for fat-soluble vitamins was successfully prepared using a QbD approach.


Subject(s)
Drug Compounding/standards , Fat Emulsions, Intravenous/administration & dosage , Lipids/chemistry , Solvents/chemistry , Vitamins/administration & dosage , Animals , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Drug Stability , Erythrocytes , Fat Emulsions, Intravenous/chemistry , Fat Emulsions, Intravenous/toxicity , Hemolysis/drug effects , Lipids/toxicity , Particle Size , Quality Control , Rabbits , Research Design , Solvents/toxicity , Toxicity Tests , Viscosity , Vitamins/chemistry , Vitamins/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL