Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Acta Pharmacol Sin ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914677

ABSTRACT

Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have obvious advantages over MSC therapy. But the strong procoagulant properties of MSC-EVs pose a potential risk of thromboembolism, an issue that remains insufficiently explored. In this study, we systematically investigated the procoagulant activity of large EVs derived from human umbilical cord MSCs (UC-EVs) both in vitro and in vivo. UC-EVs were isolated from cell culture supernatants. Mice were injected with UC-EVs (0.125, 0.25, 0.5, 1, 2, 4 µg/g body weight) in 100 µL PBS via the tail vein. Behavior and mortality were monitored for 30 min after injection. We showed that these UC-EVs activated coagulation in a dose- and tissue factor-dependent manner. UC-EVs-induced coagulation in vitro could be inhibited by addition of tissue factor pathway inhibitor. Notably, intravenous administration of high doses of the UC-EVs (1 µg/g body weight or higher) led to rapid mortality due to multiple thrombus formations in lung tissue, platelets, and fibrinogen depletion, and prolonged prothrombin and activated partial thromboplastin times. Importantly, we demonstrated that pulmonary thromboembolism induced by the UC-EVs could be prevented by either reducing the infusion rate or by pre-injection of heparin, a known anticoagulant. In conclusion, this study elucidates the procoagulant characteristics and mechanisms of large UC-EVs, details the associated coagulation risk during intravenous delivery, sets a safe upper limit for intravenous dose, and offers effective strategies to prevent such mortal risks when high doses of large UC-EVs are needed for optimal therapeutic effects, with implications for the development and application of large UC-EV-based as well as other MSC-EV-based therapies.

2.
Cancer Immunol Immunother ; 73(8): 156, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834869

ABSTRACT

BACKGROUND: Ubiquitin-specific proteases family is crucial to host immunity against pathogens. However, the correlations between USP21 and immunosurveillance and immunotherapy for colorectal cancer (CRC) have not been reported. METHODS: The differential expression of USP21 between CRC tissues and normal tissues was analyzed using multiple public databases. Validation was carried out in clinical samples through qRT-PCR and IHC. The correlation between USP21 and the prognosis, as well as clinical pathological characteristics of CRC patients, was investigated. Moreover, cell models were established to assess the influence of USP21 on CRC growth and progression, employing CCK-8 assays, colony formation assays, and wound-healing assays. Subsequently, gene set variation analysis (GSVA) was used to explore the potential biological functions of USP21 in CRC. The study also examined the impact of USP21 on cytokine levels and immune cell infiltration in the tumor microenvironment (TME). Finally, the effect of USP21 on the response to immunotherapy and chemotherapy in CRC was analyzed. RESULTS: The expression of USP21 was significantly upregulated in CRC. High USP21 is correlated with poor prognosis in CRC patients and facilitates the proliferation and migration capacities of CRC cells. GSVA indicated an association between low USP21 and immune activation. Moreover, low USP21 was linked to an immune-activated TME, characterized by high immune cell infiltration. Importantly, CRC with low USP21 exhibited higher tumor mutational burden, high PD-L1 expression, and better responsiveness to immunotherapy and chemotherapeutic drugs. CONCLUSION: This study revealed the role of USP21 in TME, response to therapy, and clinical prognosis in CRC, which provided novel insights for the therapeutic application in CRC.


Subject(s)
Colorectal Neoplasms , Tumor Microenvironment , Ubiquitin Thiolesterase , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Colorectal Neoplasms/immunology , Colorectal Neoplasms/metabolism , Tumor Microenvironment/immunology , Prognosis , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Male , Female , Cell Proliferation , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Middle Aged , Immunotherapy/methods
3.
Food Chem ; 452: 139608, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38754171

ABSTRACT

Protein from tiger nut meal (TNP) performance high nutritional value. This study optimized the extraction parameters for TNP (DES-TNP) using deep eutectic solvent, with HBD: HBA = 5:1, Liquid: Solid = 11:1, and the moisture content was 15 %. A comprehensive comparison was conducted with the protein extracted using alkali-soluble acid precipitation (ASAE-TNP). DES-TNP demonstrated significantly higher purity (76.21 ± 2.59 %) than ASAE-TNP (67.48 ± 1.11 %). Density functional theory confirmed the successful synthesis of DES and its strong interaction with TNP. Moreover, DES-TNP and ASAE-TNP were different in structure (microscopic, secondary, and tertiary) and molecular weight distribution. The discrepancy contributed to the different functional properties, DES-TNP exhibiting better solubility, emulsification and foaming properties at pH13 compared to ASAE-TNP. For nutritional properties, DES-TNP and ASAE-TNP exhibited similar amino acid composition and digestibility, but the total amino acid content of DES-TNP was higher. This study presented a novel method for the extraction and comprehensive utilization of TNP.


Subject(s)
Alkalies , Deep Eutectic Solvents , Nutritive Value , Plant Proteins , Solubility , Plant Proteins/chemistry , Alkalies/chemistry , Deep Eutectic Solvents/chemistry , Nuts/chemistry , Amino Acids/chemistry , Chemical Precipitation , Molecular Weight
4.
Article in English | MEDLINE | ID: mdl-38757332

ABSTRACT

INTRODUCTION: Quercetin (Qc), rutin (Ru), and hyperoside (Hyp) are three common polyphenols widely distributed in the plant kingdom. METHOD: This study explored the inhibition and mechanisms of Qc, Ru, and Hyp against xanthine oxidase (XOD) by enzyme kinetic analysis, fluorescence analysis, and molecular docking. The inhibitory activities of the three polyphenols on XOD showed the following trend: quercetin > hyperoside > rutin, with IC50 values of 8.327 ± 0.36 µmol/L, 35.215 ± 0.4 µmol/L and 60.811 ± 0.19 µmol/L, respectively. All three polyphenols inhibited xanthine oxidase activity in a mixed-competitive manner. Synchronous fluorescence results demonstrated that three polyphenols binding to XOD were spontaneous and showed static quenching. RESULT: The binding of the three polyphenols to XOD is mainly driven by hydrogen bonding and van der Waals forces, resulting in the formation of an XOD-XA complex with only one affinity binding site. The binding sites of the three RSFQ phenolic compounds are close to those of tryptophan. Molecular docking showed that all three polyphenols enter the active pocket of XOD and maintain the stability of the complex through hydrogen bonding, hydrophobic interaction, and van der Waals forces. CONCLUSION: The results provide a theoretical basis for quercetin, rutin, and hyperoside to be used as function factors to prevent hyperuricemia.

5.
Nano Lett ; 24(22): 6788-6796, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38781093

ABSTRACT

Currently, the improvement in the processing capacity of traditional processors considerably lags behind the demands of real-time image processing caused by the advancement of photodetectors and the widespread deployment of high-definition image sensors. Therefore, achieving real-time image processing at the sensor level has become a prominent research domain in the field of photodetector technology. This goal underscores the need for photodetectors with enhanced multifunctional integration capabilities than can perform real-time computations using optical or electrical signals. In this study, we employ an innovative p-type semiconductor GaTe0.5Se0.5 to construct a polarization-sensitive wide-spectral photodetector. Leveraging the wide-spectral photoresponse, we realize three-band imaging within a wavelength range of 390-810 nm. Furthermore, real-time image convolutional processing is enabled by configuring appropriate convolution kernels based on the polarization-sensitive photocurrents. The innovative design of the polarization-sensitive wide-spectral GaTe0.5Se0.5-based photodetector represents a notable contribution to the domain of real-time image perception and processing.

6.
Front Med (Lausanne) ; 11: 1289928, 2024.
Article in English | MEDLINE | ID: mdl-38765259

ABSTRACT

Background: Chronic Obstructive Pulmonary Disease (COPD) is a common, preventable, and treatable disease. Traditional Chinese Medicine (TCM) has shown promising potential in COPD treatment. and we conducted a multi-center RCT to evaluate the effectiveness of TCM-based therapy in stable COPD patients. Methods: In this multicenter, double-blind RCT, a total of 200 patients were supposed to be assigned to either trial or control group randomly. Both groups received Tiotropium (18 µg) from month 0 to month 12. Trial group received additional TCM granules, while control group received a placebo from month 0 to month 6. Symptom assessment, total effective rate, lung function measurements, hospitalization rates, and quality of life were evaluated at month 0, month 6, and month 12. Adverse events were assessed at month 12. Results: Of the initial 105 patients (aged 40-80) who completed the study, 51 were in trial group and 54 were in control group. At month 6, significant differences were observed between two groups in total effective rate (p = 0.020), sputum score (p = 0.047), changes in FVC% (p = 0.047) and FEV1 (p = 0.046). At month 12, significant differences were observed in sputum score (p = 0.020), FVC (p = 0.042), and change in FEV1 (p = 0.013). Compared to baseline, they both demonstrated improvements in symptoms, acute exacerbation, lung function, quality of life, and exercise tolerance. Conclusion: TCM treatment effectively improved total effective rate, sputum symptom, FVC%, FEV1, and exhibited prolonged efficacy in improving sputum symptoms and FEV1 in stable COPD patients.Clinical trial registration:https://www.chictr.org.cn/showproj.html?proj=6029 identifier ChiCTR-TRC-13003531.

7.
Adv Sci (Weinh) ; 11(24): e2309781, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38610112

ABSTRACT

Remote sensing technology, which conventionally employs spectrometers to capture hyperspectral images, allowing for the classification and unmixing based on the reflectance spectrum, has been extensively applied in diverse fields, including environmental monitoring, land resource management, and agriculture. However, miniaturization of remote sensing systems remains a challenge due to the complicated and dispersive optical components of spectrometers. Here, m-phase GaTe0.5Se0.5 with wide-spectral photoresponses (250-1064 nm) and stack it with WSe2 are utilizes to construct a two-dimensional van der Waals heterojunction (2D-vdWH), enabling the design of a gate-tunable wide-spectral photodetector. By utilizing the multi-photoresponses under varying gate voltages, high accuracy recognition can be achieved aided by deep learning algorithms without the original hyperspectral reflectance data. The proof-of-concept device, featuring dozens of tunable gate voltages, achieves an average classification accuracy of 87.00% on 6 prevalent hyperspectral datasets, which is competitive with the accuracy of 250-1000 nm hyperspectral data (88.72%) and far superior to the accuracy of non-tunable photoresponse (71.17%). Artificially designed gate-tunable wide-spectral 2D-vdWHs GaTe0.5Se0.5/WSe2-based photodetector present a promising pathway for the development of miniaturized and cost-effective remote sensing classification technology.

8.
ACS Nano ; 18(9): 7046-7063, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38381372

ABSTRACT

Type 2 alveolar epithelial cell (AEC2) senescence is crucial to the pathogenesis of pulmonary fibrosis (PF). The nicotinamide adenine dinucleotide (NAD+)-consuming enzyme cluster of differentiation 38 (CD38) is a marker of senescent cells and is highly expressed in AEC2s of patients with PF, thus rendering it a potential treatment target. Umbilical cord mesenchymal stem cell (MSC)-derived extracellular vesicles (MSC-EVs) have emerged as a cell-free treatment with clinical application prospects in antiaging and antifibrosis treatments. Herein, we constructed CD38 antigen receptor membrane-modified MSC-EVs (CD38-ARM-MSC-EVs) by transfecting MSCs with a lentivirus loaded with a CD38 antigen receptor-CD8 transmembrane fragment fusion plasmid to target AEC2s and alleviate PF. Compared with MSC-EVs, the CD38-ARM-MSC-EVs engineered in this study showed a higher expression of the CD38 antigen receptor and antifibrotic miRNAs and targeted senescent AEC2s cells highly expressing CD38 in vitro and in naturally aged mouse models after intraperitoneal administration. CD38-ARM-MSC-EVs effectively restored the NAD+ levels, reversed the epithelial-mesenchymal transition phenotype, and rejuvenated senescent A549 cells in vitro, thereby mitigating multiple age-associated phenotypes and alleviating PF in aged mice. Thus, this study provides a technology to engineer MSC-EVs and support our CD38-ARM-MSC-EVs to be developed as promising agents with high clinical potential against PF.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Pulmonary Fibrosis , Humans , Mice , Animals , Pulmonary Fibrosis/therapy , Pulmonary Fibrosis/metabolism , Alveolar Epithelial Cells , NAD/metabolism , Extracellular Vesicles/metabolism , Receptors, Antigen/metabolism
9.
Food Chem ; 444: 138558, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38335679

ABSTRACT

This study revealed the variations in odor characteristics and underlying mechanisms of different cross-linked surimi gels under liquid nitrogen (LN) spray freezing. The results demonstrated that LN spray freezing had an essential effect on the gels' odor. The odor changes in the -80 °C LN spray freezing group were closer to the control group, while -35 °C LN spray freezing treatment had the greatest impact on the aroma quality of gels. Freezing reduced gels' texture properties, intensified lipid and protein oxidation, altered protein conformation, increased surface hydrophobicity and hydrophobic interactions. These changes affected the gels' odor characteristics, leading to a reduction in fish aroma and an increase in fishy and oil odors after freezing. These tendencies were more pronounced at -35 °C LN spray freezing with lower cross-linking degrees, and reducing the freezing temperature to -80 °C and increasing the cross-linking degree to 62.99% mitigated the extent of deterioration in gel flavor quality.


Subject(s)
Amino Acids , Nitrogen , Animals , Freezing , Oxidation-Reduction , Gels/chemistry , Fish Products/analysis , Fish Proteins/chemistry , Food Handling/methods
10.
Clin Exp Med ; 24(1): 6, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38240869

ABSTRACT

Despite conventional glucocorticoid and antifungal therapy, acute exacerbation and hospitalization occur frequently in patients with allergic bronchopulmonary aspergillosis (ABPA). Whether omalizumab is an effective and safe treatment for adult patients with ABPA complicating asthma. Patients with ABPA complicating asthma who were treated with omalizumab from October 2019 to May 2023 were collected from five tertiary hospitals and evaluated. The frequencies of acute exacerbation and hospitalization; the number of eosinophils; the total IgE levels; and the average monthly medical dosages after 3, 6, and 12 months of omalizumab treatment were analysed, and the data before and after treatment (up to one year) were compared. The efficacy and safety of omalizumab treatment were assessed. In total, 26 patients were enrolled. The average monthly glucocorticoid dosage significantly decreased (median 0 vs. 24 mg/m) after 6 months of omalizumab treatment compared with 3 months; 73.68% of patients discontinued glucocorticoids after ≤ 12 months of treatment. Similarly, the average monthly dosage of antifungal agents was significantly decreased (median 0 vs. 3.49 g/m) after 12 months of treatment compared with 3 months. The average monthly glucocorticoid dosage (median 213.75 vs. 65.42 mg/m, P = 0.002) and the frequency of acute exacerbation (median 0.94 vs. 0.44 events, P = 0.033) were considerably reduced after omalizumab treatment. Omalizumab is effective in reducing the frequency of acute exacerbation and the necessary dosage of glucocorticoids in adult patients with ABPA complicating asthma. Patient age and BMI may affect the efficacy of treatment.


Subject(s)
Anti-Allergic Agents , Aspergillosis, Allergic Bronchopulmonary , Asthma , Omalizumab , Adult , Humans , Anti-Allergic Agents/therapeutic use , Aspergillosis, Allergic Bronchopulmonary/drug therapy , Aspergillosis, Allergic Bronchopulmonary/complications , Asthma/complications , Asthma/drug therapy , China , Glucocorticoids/therapeutic use , Omalizumab/therapeutic use
11.
Int J Mol Sci ; 25(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38256017

ABSTRACT

Red swamp crayfish, Procambarus clarkii (P. clarkii), is an important model crustacean organism used in many types of research. However, the effects of different doses of aminomethylphosphonic acid (AMAP) on the transcriptome and metabolites of P. clarkii have not been explored. Thus, this study investigated the molecular and metabolic mechanisms activated at the different exposure dosages of AMAP in P. clarkii to provide new insights into the strategies of P. clarkii in response to the high concentrations of AMAP in the environment. In the present study, the P. clarkii were divided into three groups (control group; low-dosage AMAP exposure; high-dosage AMAP exposure), and hepatopancreatic tissue samples were dependently taken from the three groups. The response mechanisms at the different dosages of AMAP were investigated based on the transcriptome and metabolome data of P. clarkii. Differentially expressed genes and differentially abundant metabolites were identified in the distinct AMAP dosage exposure groups. The genes related to ribosome cell components were significantly up-regulated, suggesting that ribosomes play an essential role in responding to AMAP stress. The metabolite taurine, involved in the taurine and hypotaurine metabolism pathway, was significantly down-regulated. P. clarkii may provide feedback to counteract different dosages of AMAP via the upregulation of ribosome-related genes and multiple metabolic pathways. These key genes and metabolites play an important role in the response to AMAP stress to better prepare for survival in high AMAP concentrations.


Subject(s)
Astacoidea , Organophosphonates , Transcriptome , Animals , Astacoidea/genetics , Metabolome , Taurine
12.
Clin Chim Acta ; 555: 117783, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38272251

ABSTRACT

IgA nephropathy (IgAN) is an immune-mediated glomerulonephritis, posing a challenge for the long-term management. It is crucial to monitor the disease's activity over the disease course. Crescent lesions have been known as an active lesion associated with immune activity. We aimed to develop the Crescent Calculator to aid clinicians in making timely and well-informed decisions throughout the long-term disease course, such as renal biopsies and immunosuppressive therapy. 1,761 patients with biopsy-proven IgAN were recruited from four medical centers in Zhejiang Province, China. 16.9% presented crescent lesions. UPCR, URBC, eGFR and C4 were independently associated with the crescent lesions. By incorporating these variables, the Crescent Calculator was constructed to estimate the likelihood of crescent lesions. The predictor achieved AUC values of over 0.82 in two independent testing datasets. In addition, to fulfill varied clinical needs, multiple classification modes were established. The Crescent Calculator was developed to estimate the risk of crescent lesions for patients with IgAN, assisting clinicians in making timely, objective, and well-informed decisions regarding the need for renal biopsies and more appropriate use of immunosuppressive therapy in patients with IgAN.


Subject(s)
Glomerulonephritis, IGA , Glomerulonephritis , Humans , Glomerulonephritis, IGA/diagnosis , Disease Progression , Immunosuppression Therapy , Biopsy , Retrospective Studies , Prognosis
13.
Clin Epigenetics ; 16(1): 14, 2024 01 20.
Article in English | MEDLINE | ID: mdl-38245781

ABSTRACT

BACKGROUND: Epigenetics plays an important role in the pathogenesis of inflammatory bowel disease (IBD). Some studies have reported that YAP is involved in inflammatory response and can regulate target genes through epigenetic modifications. JMJD3, a histone H3K27me3 demethylase, is associated with some inflammatory diseases. In this study, we investigated the role of YAP in the development of IBD and the underlying epigenetic mechanisms. RESULTS: YAP expression was significantly increased in both in vitro and in vivo colitis models as well as in patients with IBD. Epithelial-specific knockout of YAP aggravates disease progression in dextran sodium sulfate (DSS)-induced murine colitis. In the TNF-α-activated cellular inflammation model, YAP knockdown significantly increased JMJD3 expression. Coimmunoprecipitation experiments showed that YAP and EZH2 bind to each other, and chromatin immunoprecipitation-PCR (ChIP-PCR) assay indicated that silencing of YAP or EZH2 decreases H3K27me3 enrichment on the promoter of JMJD3. Finally, administration of the JMJD3 pharmacological inhibitor GSK-J4 alleviated the progression of DSS-induced murine colitis. CONCLUSION: Our findings elucidate an epigenetic mechanism by which YAP inhibits the inflammatory response in colitis through epigenetic silencing of JMJD3 by recruiting EZH2.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Humans , Mice , Colitis/chemically induced , Colitis/genetics , DNA Methylation , Epigenesis, Genetic , Histones/metabolism , Inflammation/chemically induced , Inflammation/genetics , Inflammation/metabolism , Inflammatory Bowel Diseases/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism
14.
Mater Horiz ; 11(6): 1567-1578, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38265092

ABSTRACT

Solid materials with ultra-low thermal conductivity (κ) are of great interest in thermoelectrics for energy conversion or as thermal barrier coatings for thermal insulation. Many low-κ materials exhibit unique properties, such as weak or even insignificant dependence on temperature (T) for κ, i.e., an anomalous glass-like behavior. However, a comprehensive theoretical model elucidating the microscopic phonon mechanism responsible for the glass-like κ-T relationship is still absent. Herein, we take rare-earth tantalates (RE3TaO7) as examples to reexamine phonon thermal transport in defective crystals. By combining experimental studies and atomistic simulations up to 1800 K, we revealed that diffusion-like phonons related to inhomogeneous interatomic bonding contribute more than 70% to the total κ, overturning the conventional understanding that low-frequency phonons dominate heat transport. Furthermore, due to the bridging effects of interatomic bonding, the κ of high-entropy tantalates is not necessarily lower than that of medium-entropy materials, suggesting that attempts to reduce κ through high-entropy engineering are limited, at least in defective fluorite tantalates. The new physical mechanism of multimodal phonon thermal transport in defective structures demonstrated in this work provides a reference for the analysis of phonon transport and offers a new strategy to develop and design low-κ materials by regulating the inhomogeneity of interatomic bonding.

15.
Adv Mater ; 36(3): e2307769, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37696251

ABSTRACT

Polarization imaging presents advantages in capturing spatial, spectral, and polarization information across various spectral bands. It can improve the perceptual ability of image sensors and has garnered more applications. Despite its potential, challenges persist in identifying band information and implementing image enhancement using polarization imaging. These challenges often necessitate integrating spectrometers or other components, resulting in increased complexities within image processing systems and hindering device miniaturization trends. Here, the characteristics of anisotropic absorption reversal are systematically elucidated in pucker-like group IV-VI semiconductors MX (M = Ge, Sn; X = S, Se) through theoretical predictions and experimental validations. Additionally, the fundamental mechanisms behind anisotropy reversal in different bands are also explored. The photodetector is constructed by utilizing MX as a light-absorbing layer, harnessing polarization-sensitive photoresponse for virtual imaging. The results indicate that the utilization of polarization reversal photodetectors holds advantages in achieving further multifunctional integration within the device structure while simplifying its configuration, including band information identification and image enhancement. This study provides a comprehensive analysis of polarization reversal mechanisms and presents a promising and reliable approach for achieving dual-band image band identification and image enhancement without additional auxiliary components.

16.
Acta Pharmacol Sin ; 45(1): 180-192, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37644132

ABSTRACT

Adhesion molecules play essential roles in the homeostatic regulation and malignant transformation of hematopoietic cells. The dysregulated expression of adhesion molecules in leukemic cells accelerates disease progression and the development of drug resistance. Thus, targeting adhesion molecules represents an attractive anti-leukemic therapeutic strategy. In this study, we investigated the prognostic role and functional significance of cytohesin-1 (CYTH1) in acute myeloid leukemia (AML). Analysis of AML patient data from the GEPIA and BloodSpot databases revealed that CYTH1 was significantly overexpressed in AML and independently correlated with prognosis. Functional assays using AML cell lines and an AML xenograft mouse model confirmed that CYTH1 depletion significantly inhibited the adhesion, migration, homing, and engraftment of leukemic cells, delaying disease progression and prolonging animal survival. The CYTH1 inhibitor SecinH3 exerted in vitro and in vivo anti-leukemic effects by disrupting leukemic adhesion and survival programs. In line with the CYTH1 knockdown results, targeting CYTH1 by SecinH3 suppressed integrin-associated adhesion signaling by reducing ITGB2 expression. SecinH3 treatment efficiently induced the apoptosis and inhibited the growth of a panel of AML cell lines (MOLM-13, MV4-11 and THP-1) with mixed-lineage leukemia gene rearrangement, partly by reducing the expression of the anti-apoptotic protein MCL1. Moreover, we showed that SecinH3 synergized with the BCL2-selective inhibitor ABT-199 (venetoclax) to inhibit the proliferation and promote the apoptosis of ABT-199-resistant leukemic cells. Taken together, our results not only shed light on the role of CYTH1 in cell-adhesion-mediated leukemogenesis but also propose a novel combination treatment strategy for AML.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Mice , Animals , Leukemia, Myeloid, Acute/drug therapy , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Adhesion Molecules , Disease Progression , Cell Line, Tumor
17.
Foods ; 12(24)2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38137234

ABSTRACT

In this study, the bighead carp (Aristichthys nobilis) was the object of research to compare and analyze the contents of conventional nutrients, amino acids, fatty acids, inosinic acid, and earthy-smelling compounds (geosmin and 2-methylisoborneol) in muscles of its dorsal, belly, tail, opercula, eye socket, and mandible in order to evaluate their quality. The findings could inform recommendations for the consumption and processing of different muscle parts of the bighead carp. The results showed that the water content in the abdominal muscle was significantly lower than that in other parts, and the crude fat content was significantly higher than that in other parts (p < 0.05, the same below). Seventeen kinds of amino acids were detected in the muscles of the six parts of the fish, and the dorsal muscles had the highest umami amino acids, essential amino acids and total amino acids, which were 6.45 g/100 g, 6.82 g/100 g and 17.26 g/100 g, respectively. The total amount of essential amino acids in the muscle was higher than that in the FAO/WHO standard model. According to the AAS standard, the first limiting amino acid in the muscle of the six parts was valine (Val). There were 26 kinds of fatty acids in the abdomen, under the gill cover and in the eye socket muscles, and the content of polyunsaturated fatty acids in the mandibular muscles was the highest (45.41%). The content of inosine in the dorsal muscle was significantly higher than that in other parts. Geosmin was the main substance in the muscle. There was no correlation between the distribution of earthy-smelling compounds and fat content, but the content of earthy-smelling compounds in the muscle of the belly and eye socket was the highest. Therefore, the muscle quality of different parts of the bighead carp has its own characteristics, and targeted development and utilization can make more efficient use of bighead carp resources.

18.
Oncology ; 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37827132

ABSTRACT

BACKGROUND: Cuproptosis, a novel form of cell death regulated by protein lipoylation and implicated in mitochondrial metabolism. However, the impact of the cuproptosis-related gene γ-glutamylcysteine synthetase (GCSH) on endometrial cancer (EC) prognosis, tumor immune microenvironment, and therapeutic response remains to be further researched. METHODS: The differential expression of GCSH between endometrial cancer and normal tissues was analyzed using multiple public databases. Additionally, cancer and adjacent tissues were prospectively collected from 17 EC patients, and immunohistochemical analysis was performed to further investigate GCSH expression differences. The relationship between GCSH and the prognosis and clinicopathological characteristics of EC patients was evaluated, and a nomogram was constructed to predict patient survival based on GCSH expression. Then, Gene set variation analysis (GSVA) was utilized to explore the potential biological functions of GCSH in EC. The impact of GCSH on the tumor microenvironment (TME) was estimated. Finally, the effect of GCSH on the response to immunotherapy and chemotherapeutic drugs in EC was investigated. RESULTS: The expression of GCSH was significantly upregulated in EC. High GCSH expression was associated with poor prognosis in EC patients. Enrichment analysis showed that high GCSH was associated with immune suppression. Furthermore, high GCSH was found to be associated with a non-inflamed TME, leading to decreased infiltration levels of immune cells. Finally, it was observed that patients with high GCSH were insensitive to both immunotherapy and chemotherapeutic drugs. CONCLUSION: This study revealed the role of GCSH in TME, response to therapy, and clinical prognosis in EC, which provided novel insights for the therapeutic application in EC.

20.
Arterioscler Thromb Vasc Biol ; 43(10): 1887-1899, 2023 10.
Article in English | MEDLINE | ID: mdl-37650330

ABSTRACT

BACKGROUND: The differentiation of pericytes into myofibroblasts causes microvascular degeneration, ECM (extracellular matrix) accumulation, and tissue stiffening, characteristics of fibrotic diseases. It is unclear how pericyte-myofibroblast differentiation is regulated in the microvascular environment. Our previous study established a novel 2-dimensional platform for coculturing microvascular endothelial cells (ECs) and pericytes derived from the same tissue. This study investigated how ECM stiffness regulated microvascular ECs, pericytes, and their interactions. METHODS: Primary microvessels were cultured in the TGM2D medium (tubular microvascular growth medium on 2-dimensional substrates). Stiff ECM was prepared by incubating ECM solution in regular culture dishes for 1 hour followed by PBS wash. Soft ECM with Young modulus of ≈6 kPa was used unless otherwise noted. Bone grafts were prepared from the rat skull. Immunostaining, RNA sequencing, RT-qPCR (real-time quantitative polymerase chain reaction), Western blotting, and knockdown experiments were performed on the cells. RESULTS: Primary microvascular pericytes differentiated into myofibroblasts (NG2+αSMA+) on stiff ECM, even with the TGFß (transforming growth factor beta) signaling inhibitor A83-01. Soft ECM and A83-01 cooperatively maintained microvascular stability while inhibiting pericyte-myofibroblast differentiation (NG2+αSMA-/low). We thus defined 2 pericyte subpopulations: primary (NG2+αSMA-/low) and activated (NG2+αSMA+) pericytes. Soft ECM promoted microvascular regeneration and inhibited fibrosis in bone graft transplantation in vivo. As integrins are the major mechanosensor, we performed RT-qPCR screening of integrin family members and found Itgb1 (integrin ß1) was the major subunit downregulated by soft ECM and A83-01 treatment. Knocking down Itgb1 suppressed myofibroblast differentiation on stiff ECM. Interestingly, ITGB1 phosphorylation (Y783) was mainly located on microvascular ECs on stiff ECM, which promoted EC secretion of paracrine factors, including CTGF (connective tissue growth factor), to induce pericyte-myofibroblast differentiation. CTGF knockdown or monoclonal antibody treatment partially reduced myofibroblast differentiation, implying the participation of multiple pathways in fibrosis formation. CONCLUSIONS: ECM stiffness and TGFß signaling cooperatively regulate microvascular stability and pericyte-myofibroblast differentiation. Stiff ECM promotes EC ITGB1 phosphorylation (Y783) and CTGF secretion, which induces pericyte-myofibroblast differentiation.


Subject(s)
Paracrine Communication , Pericytes , Rats , Animals , Pericytes/metabolism , Endothelial Cells/metabolism , Cells, Cultured , Transforming Growth Factor beta/metabolism , Fibrosis , Extracellular Matrix/metabolism , Myofibroblasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...