Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
J Nanobiotechnology ; 22(1): 308, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825711

ABSTRACT

Research into mRNA vaccines is advancing rapidly, with proven efficacy against coronavirus disease 2019 and promising therapeutic potential against a variety of solid tumors. Adjuvants, critical components of mRNA vaccines, significantly enhance vaccine effectiveness and are integral to numerous mRNA vaccine formulations. However, the development and selection of adjuvant platforms are still in their nascent stages, and the mechanisms of many adjuvants remain poorly understood. Additionally, the immunostimulatory capabilities of certain novel drug delivery systems (DDS) challenge the traditional definition of adjuvants, suggesting that a revision of this concept is necessary. This review offers a comprehensive exploration of the mechanisms and applications of adjuvants and self-adjuvant DDS. It thoroughly addresses existing issues mentioned above and details three main challenges of immune-related adverse event, unclear mechanisms, and unsatisfactory outcomes in old age group in the design and practical application of cancer mRNA vaccine adjuvants. Ultimately, this review proposes three optimization strategies which consists of exploring the mechanisms of adjuvant, optimizing DDS, and improving route of administration to improve effectiveness and application of adjuvants and self-adjuvant DDS.


Subject(s)
Adjuvants, Immunologic , Cancer Vaccines , Nanotechnology , Neoplasms , mRNA Vaccines , Humans , Cancer Vaccines/immunology , Nanotechnology/methods , Neoplasms/therapy , Neoplasms/immunology , Animals , Drug Delivery Systems/methods , COVID-19/prevention & control , Adjuvants, Vaccine , RNA, Messenger/genetics , SARS-CoV-2/immunology , Vaccines, Synthetic/immunology
2.
Nat Commun ; 15(1): 3892, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719816

ABSTRACT

As a sustainable alternative to fossil fuel-based manufacture of bulk oxygenates, electrochemical synthesis using CO and H2O as raw materials at ambient conditions offers immense appeal. However, the upscaling of the electrosynthesis of oxygenates encounters kinetic bottlenecks arising from the competing hydrogen evolution reaction with the selective production of ethylene. Herein, a catalytic relay system that can perform in tandem CO capture, activation, intermediate transfer and enrichment on a Cu-Ag composite catalyst is used for attaining high yield CO-to-oxygenates electrosynthesis at high current densities. The composite catalyst Cu/30Ag (molar ratio of Cu to Ag is 7:3) enables high efficiency CO-to-oxygenates conversion, attaining a maximum partial current density for oxygenates of 800 mA cm-2 at an applied current density of 1200 mA cm-2, and with 67 % selectivity. The ability to finely control the production of ethylene and oxygenates highlights the principle of efficient catalyst design based on the relay mechanism.

3.
J Am Chem Soc ; 146(14): 10044-10051, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38557014

ABSTRACT

The electrochemical NO reduction reaction (NORR) is a promising approach for both nitrogen cycle regulation and ammonia synthesis. Due to the relatively low concentration of the NO source and poor solubility of NO in solution, mass transfer limitation is a serious but easily overlooked issue. In this work, porous carbon-supported ultrafine Cu clusters grown on Cu nanowire arrays (defined as Cu@Cu/C NWAs) are prepared for low-concentration NORR. A high Faradaic efficiency (93.0%) and yield rate (1180.5 µg h-1 cm-2) of ammonia are realized on Cu@Cu/C NWAs at -0.1 V vs a reversible hydrogen electrode (RHE), which are far superior to those of Cu NWAs and other reported performances under similar conditions. The construction of a porous carbon support can effectively decrease the NO diffusion kinetics and promote NO coverage for subsequent highly effective conversion. Moreover, the favorable metal-support interaction between ultrafine Cu clusters and carbon support enhances the adsorption of NO and decreases the barrier for *HNO formation in comparison with that of pure Cu NWAs. Overall, the whole NORR can be fully strengthened on Cu@Cu/C NWAs at low NO concentrations.

4.
Angew Chem Int Ed Engl ; : e202406750, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651747

ABSTRACT

Electrocatalytic reduction of nitrate to ammonia provides a green alternate to the Haber-Bosch method, yet it suffers from sluggish kinetics and a low yield rate. The nitrate reduction follows a tandem reaction of nitrate reduction to nitrite and subsequent nitrite hydrogenation to generate ammonia, and the ammonia Faraday efficiency (FE) is limited by the competitive hydrogen evolution reaction. Herein, we design a heterostructure catalyst to remedy the above issues, which consists of Ni nanosphere core and Ni(OH)2 nanosheet shell (Ni/Ni(OH)2). In situ Raman spectroscopy reveals Ni and Ni(OH)2 are interconvertible according to the applied potential, facilitating the cascade nitrate reduction synergistically. Consequently, it attains superior electrocatalytic nitrate reduction performance with an ammonia FE of 98.50 % and a current density of 0.934 A cm-2 at -0.476 V versus reversible hydrogen electrode, and exhibits an average ammonia yield rate of 84.74 mg h-1 cm-2 during the 102-hour stability test, which is highly superior to the reported catalysts tested under similar conditions. Density functional theory calculations corroborate the synergistic effect of Ni and Ni(OH)2 in the tandem reaction of nitrate reduction. Moreover, the Ni/Ni(OH)2 catalyst also possesses good capability for methanol oxidation and thus is used to establish a system coupling with nitrate reduction.

5.
J Am Chem Soc ; 146(19): 12976-12983, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38567925

ABSTRACT

Electrocatalytic reduction of nitrate to ammonia (NRA) has emerged as an alternative strategy for sewage treatment and ammonia generation. Despite excellent performances having been achieved over cobalt-based electrocatalysts, the reaction mechanism as well as veritable active species across a wide potential range are still full of controversy. Here, we adopt CoP, Co, and Co3O4 as model materials to solve these issues. CoP evolves into a core@shell structured CoP@Co before NRA. For CoP@Co and Co catalysts, a three-step relay mechanism is carried out over superficial dynamical Coδ+ active species under low overpotential, while a continuous hydrogenation mechanism from nitrate to ammonia is unveiled over superficial Co species under high overpotential. In comparison, Co3O4 species are stable and steadily catalyze nitrate hydrogenation to ammonia across a wide potential range. As a result, CoP@Co and Co exhibit much higher NRA activity than Co3O4 especially under a low overpotential. Moreover, the NRA performance of CoP@Co is higher than Co although they experience the same reaction mechanism. A series of characterizations clarify the reason for performance enhancement highlighting that CoP core donates abundant electrons to superficial active species, leading to the generation of more active hydrogen for the reduction of nitrogen-containing intermediates.

6.
Angew Chem Int Ed Engl ; 63(16): e202400289, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38372474

ABSTRACT

Electrocatalytic nitrate reduction to ammonia is a promising approach in term of pollutant appreciation. Cu-based catalysts performs a leading-edge advantage for nitrate reduction due to its favorable adsorption with *NO3. However, the formation of active hydrogen (*H) on Cu surface is difficult and insufficient, leading to the significant generation of by-product NO2 -. Herein, sulphur doped Cu (Cu-S) is prepared via an electrochemical conversion strategy and used for nitrate electroreduction. The high Faradaic efficiency (FE) of ammonia (~98.3 %) and an extremely low FE of nitrite (~1.4 %) are achieved on Cu-S, obviously superior to its counterpart of Cu (FENH3: 70.4 %, FENO2 -: 18.8 %). Electrochemical in situ characterizations and theoretical calculations indicate that a small amount of S doping on Cu surface can promote the kinetics of H2O dissociation to active hydrogen. The optimized hydrogen affinity validly decreases the hydrogenation kinetic energy barrier of *NO2, leading to an enhanced NH3 selectivity.

7.
Angew Chem Int Ed Engl ; 63(9): e202316772, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38204294

ABSTRACT

Renewable electricity driven electrocatalytic CO2 reduction reaction (CO2 RR) is a promising solution to carbon neutralization, which mainly generate simple carbon products. It is of great importance to produce more valuable C-N chemicals from CO2 and nitrogen species. However, it is challenging to co-reduce CO2 and NO3 - /NO2 - to generate aldoxime an important intermediate in the electrocatalytic C-N coupling process. Herein, we report the successful electrochemical conversion of CO2 and NO2 - to acetamide for the first time over copper catalysts under alkaline condition through a gas diffusion electrode. Operando spectroelectrochemical characterizations and DFT calculations, suggest acetaldehyde and hydroxylamine identified as key intermediates undergo a nucleophilic addition reaction to produce acetaldoxime, which is then dehydrated to acetonitrile and followed by hydrolysis to give acetamide under highly local alkaline environment and electric field. Moreover, the above mechanism was successfully extended to the formation of phenylacetamide. This study provides a new strategy to synthesize highly valued amides from CO2 and wastewater.

8.
Angew Chem Int Ed Engl ; 63(4): e202315109, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38059554

ABSTRACT

Electrochemical reduction of nitrate waste is promising for environmental remediation and ammonia preparation. This process includes multiple hydrogenation steps, and thus the active hydrogen behavior on the surface of the catalyst is crucial. The crystal phase referred to the atomic arrangements in crystals has a great effect on active hydrogen, but the influence of the crystal phase on nitrate reduction is still unclear. Herein, enzyme-mimicking MoS2 in different crystal phases (1T and 2H) are used as models. The Faradaic efficiency of ammonia reaches ≈90 % over 1T-MoS2 , obviously outperforming that of 2H-MoS2 (27.31 %). In situ Raman spectra and theoretical calculations reveal that 1T-MoS2 produces more active hydrogen on edge S sites at a more positive potential and conducts an effortless pathway from nitrate to ammonia instead of multiple energetically demanding hydrogenation steps (such as *HNO to *HNOH) performed on 2H-MoS2 .

9.
J Stomatol Oral Maxillofac Surg ; 125(4): 101728, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38070674

ABSTRACT

BACKGROUND AND OBJECTIVES: The resorption of flap's volume can be frequently observed in the transplantation of microvascular free flaps, which could significantly affect postoperative function. Therefore, it's essential to comprehend the postoperative flap volume and the mechanisms behind before making clinical decisions. METHODS: Literature search was conducted from database on PubMed, EMBASE, Cochrane Library, Chinese database and Google Scholar. A random effects model meta-analyses and descriptive systematic review were performed. RESULTS: The search identified 420 articles, of which 9 studies included in meta-analysis and 14 studies included in descriptive systematic review. Postoperative flap volume maintenance rate is used to represent the volume change. The pooled mean postoperative flap volume maintenance rate was 62.82 % for soft tissue flap (95 %CI: 58.83 to 66.82, p = 0.076, I2=56.3 %) and 85.96 % for bone flap (95 %CI: 84.19 to 87.73, p = 0.274, I2=20.4 %). Weight loss, muscle atrophy, and decreased serum albumin levels are risk factors for postoperative volume reduction of soft tissue flaps. The bone resorption rate of bone flaps in women is higher than that in men. CONCLUSION: When designing microvascular free flaps for oral and maxillofacial surgery, soft tissue flaps should consider an anticipated postoperative shrinkage of 37 %, while bone flaps should consider an anticipated postoperative shrinkage of 14 %.

10.
Nat Commun ; 14(1): 7368, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37963900

ABSTRACT

Electrocatalytic nitrate (NO3-) reduction to ammonia (NRA) has emerged as an alternative strategy for effluent treatment and ammonia production. Despite significant advancements that have been achieved in this field, the efficient conversion of low-concentration nitrate to ammonia at low overpotential remains a formidable challenge. This challenge stems from the sluggish reaction kinetics caused by the limited distribution of negatively charged NO3- in the vicinity of the working electrode and the competing side reactions. Here, a pulsed potential approach is introduced to overcome these issues. A good NRA performance (Faradaic efficiency: 97.6%, yield rate: 2.7 mmol-1 h-1 mgRu-1, conversion rate: 96.4%) is achieved for low-concentration (≤10 mM) nitrate reduction, obviously exceeding the potentiostatic test (Faradaic efficiency: 65.8%, yield rate: 1.1 mmol-1 h-1 mgRu-1, conversion rate: 54.1%). The combined results of in situ characterizations and finite element analysis unveil the performance enhancement mechanism that the periodic appearance of anodic potential can significantly optimize the adsorption configuration of the key *NO intermediate and increase the local NO3- concentration. Furthermore, our research implies an effective approach for the rational design and precise manipulation of reaction processes, potentially extending its applicability to a broader range of catalytic applications.

11.
JACS Au ; 3(11): 2987-2992, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38034964

ABSTRACT

A rare earth element doping strategy is reported to boost the activity and enhance the stability of MnO2 for selective formamide production through electrocatalytic oxidation coupling (EOC) of methanol and ammonia. MnO2 doped with 1% Pr was selected as the best candidate with an optimized formamide yield of 211.32 µmol cm-2 h-1, a Faradaic efficiency of 22.63%, and a stability of more than 50 h. The easier formation of Mn6+ species and the lower dissolution rate of Mn species over Pr-doped MnO2 revealed by in situ Raman spectra were responsible for the boosted formamide production and enhanced stability. In addition, a two-electrode flow electrolyzer was developed to integrate EOC with C2H2 semihydrogenation for simultaneously producing value-added products in both the anode and cathode.

13.
Angew Chem Int Ed Engl ; 62(27): e202305184, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37129145

ABSTRACT

Hydroxylamine (NH2 OH), a vital industrial feedstock, is presently synthesized under harsh conditions with serious environmental and energy concerns. Electrocatalytic nitric oxide (NO) reduction is attractive for the production of hydroxylamine under ambient conditions. However, hydroxylamine selectivity is limited by the competitive reaction of ammonia production. Herein, we regulate the adsorption configuration of NO by adjusting the atomic structure of catalysts to control the product selectivity. Co single-atom catalysts show state-of-the-art NH2 OH selectivity from NO electroreduction under neutral conditions (FE NH 2 OH ${{_{{\rm NH}{_{2}}{\rm OH}}}}$ : 81.3 %), while Co nanoparticles are inclined to generate ammonia (FE NH 3 ${{_{{\rm NH}{_{3}}}}}$ : 92.3 %). A series of in situ characterizations and theoretical simulations unveil that linear adsorption of NO on isolated Co sites enables hydroxylamine formation and bridge adsorption of NO on adjacent Co sites induces the production of ammonia.

14.
Angew Chem Int Ed Engl ; 62(19): e202217411, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36912527

ABSTRACT

As a potential substitute technique for conventional nitrate production, electrocatalytic nitrogen oxidation reaction (NOR) is gaining more and more attention. But, the pathway of this reaction is still unknown owing to the lack of understanding on key reaction intermediates. Herein, electrochemical in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and isotope-labeled online differential electrochemical mass spectrometry (DEMS) are employed to study the NOR mechanism over a Rh catalyst. Based on the detected asymmetric NO2 - bending, NO3 - vibration, N=O stretching, and N-N stretching as well as isotope-labeled mass signals of N2 O and NO, it can be deduced that the NOR undergoes an associative mechanism (distal approach) and the strong N≡N bond in N2 prefers to break concurrently with the hydroxyl addition in distal N.

15.
Angew Chem Int Ed Engl ; 62(13): e202216581, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36734467

ABSTRACT

Industrial manufacturing of ethylene chlorohydrin (ECH) critically requires excess corrosive hydrochloric acid or hypochlorous acid with dealing with massive by-products and wastes. Here we report a green and efficient electrosynthesis of ECH from ethylene oxide (EO) with NaCl over a NiFe2 O4 nanosheet anode. Theoretical results suggest that EO and Cl preferentially adsorb on Fe and Ni sites, respectively, collaboratively promoting the ECH synthesis. A Cl radical-mediated ring-opening process is proposed and confirmed, and the key Cl and carbon radical species are identified by high-resolution mass spectrometry. This strategy can enable scalable electrosynthesis of 185.1 mmol of ECH in 1 h with 92.5 % yield at a 55 mA cm-2 current density. Furthermore, a series of other chloro- and bromoethanols with good to high yields and paired synthesis of ECH and 4-amino-3,6-dichloropyridine-2-carboxylicacid via respectively loading and unloading Cl are achieved, showing the promising potential of this strategy.

16.
Angew Chem Int Ed Engl ; 62(4): e202213351, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36357325

ABSTRACT

The direct electrochemical nitric oxide reduction reaction (NORR) is an attractive technique for converting NO into NH3 with low power consumption under ambient conditions. Optimizing the electronic structure of the active sites can greatly improve the performance of electrocatalysts. Herein, we prepare body-centered cubic RuGa intermetallic compounds (i.e., bcc RuGa IMCs) via a substrate-anchored thermal annealing method. The electrocatalyst exhibits a remarkable NH4 + yield rate of 320.6 µmol h-1 mg-1 Ru with the corresponding Faradaic efficiency of 72.3 % at very low potential of -0.2 V vs. reversible hydrogen electrode (RHE) in neutral media. Theoretical calculations reveal that the electron-rich Ru atoms in bcc RuGa IMCs facilitate the adsorption and activation of *HNO intermediate. Hence, the energy barrier of the potential-determining step in NORR could be greatly reduced.

17.
Angew Chem Int Ed Engl ; 61(44): e202213009, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36106683

ABSTRACT

The scalable and durable electrosynthesis of high-valued organonitrogen compounds from carbon- and nitrogen-containing small molecules, especially operating at a high current density, is highly desirable. Here, a one-pot electrooxidation method to synthesize formamide (HCONH2 ) from methanol and ammonia over a commercial boron-doped diamond (BDD) catalyst is reported. The formamide selectivity from methanol and formamide Faradaic efficiency (FE HCONH 2 ${{_{{\rm HCONH}{_{2}}}}}$ ) achieve 73.2 % and 41.2 % at the current density of 120 mA cm-2 with high durability. The C-N bond originates from the nucleophilic attack of ammonia on an aldehyde-like intermediate. Impressively, an 8 L electrolyzer is employed for the pilot plant test over a 2200 cm2 BDD electrode, which exhibits 33.5 % FE HCONH 2 ${{_{{\rm HCONH}{_{2}}}}}$ at 120 mA cm-2 (current: 264 A) with a yield rate of 36.9 g h-1 , demonstrating the potential of this technique for large-scale electrosynthesis of formamide.

18.
Nat Commun ; 13(1): 5452, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36114196

ABSTRACT

Electrochemical conversion of abundant carbon- and nitrogen-containing small molecules into high-valued organonitrogen compounds is alluring to reducing current dependence on fossil energy. Here we report a single-cell electrochemical oxidation approach to transform methanol and ammonia into formamide under ambient conditions over Pt electrocatalyst that provides 74.26% selectivity from methanol to formamide and a Faradaic efficiency of 40.39% at 100 mA cm-2 current density, gaining an economic advantage over conventional manufacturing based on techno-economic analysis. A 46-h continuous test performed in the flow cell shows no performance decay. The combined results of in situ experiments and theoretical simulations unveil the C-N bond formation mechanism via nucleophilic attack of NH3 on an aldehyde-like intermediate derived from methanol electrooxidation. This work offers a way to synthesize formamide via C-N coupling and can be extended to substantially synthesize other value-added organonitrogen chemicals (e.g., acetamide, propenamide, formyl methylamine).

19.
J Am Chem Soc ; 144(31): 14005-14011, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35904545

ABSTRACT

The carbon-carbon (C-C) bond formation is essential for the electroconversion of CO2 into high-energy-density C2+ products, and the precise coupling pathways remain controversial. Although recent computational investigations have proposed that the OC-COH coupling pathway is more favorable in specific reaction conditions than the well-known CO dimerization pathway, the experimental evidence is still lacking, partly due to the separated catalyst design and mechanistic/spectroscopic exploration. Here, we employ density functional theory calculations to show that on low-coordinated copper sites, the *CO bindings are strengthened, and the adsorbed *CO coupling with their hydrogenation species, *COH, receives precedence over CO dimerization. Experimentally, we construct a fragmented Cu catalyst with abundant low-coordinated sites, exhibiting a 77.8% Faradaic efficiency for C2+ products at 300 mA cm-2. With a suite of in situ spectroscopic studies, we capture an *OCCOH intermediate on the fragmented Cu surfaces, providing direct evidence to support the OC-COH coupling pathway. The mechanistic insights of this research elucidate how to design materials in favor of OC-COH coupling toward efficient C2+ production from CO2 reduction.

20.
J Am Chem Soc ; 144(35): 16006-16011, 2022 09 07.
Article in English | MEDLINE | ID: mdl-35905476

ABSTRACT

Formic acid (HCOOH) can be exclusively prepared through CO2 electroreduction at an industrial current density (0.5 A cm-2). However, the global annual demand for formic acid is only ∼1 million tons, far less than the current CO2 emission scale. The exploration of an economical and green approach to upgrading CO2-derived formic acid is significant. Here, we report an electrochemical process to convert formic acid and nitrite into high-valued formamide over a copper catalyst under ambient conditions, which offers the selectivity from formic acid to formamide up to 90.0%. Isotope-labeled in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy and quasi in situ electron paramagnetic resonance results reveal the key C-N bond formation through coupling *CHO and *NH2 intermediates. This work offers an electrochemical strategy to upgrade CO2-derived formic acid into high-value formamide.


Subject(s)
Carbon Dioxide , Nitrites , Carbon Dioxide/chemistry , Formamides , Formates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...