Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
J Colloid Interface Sci ; 652(Pt B): 1743-1755, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37672977

ABSTRACT

In this study, the boron-doped iron-carbon composite (Fe@B/C-2) was prepared via a simple solvothermal and secondary calcination process by using iron metal-organic frameworks (Fe-MOFs) as precursor. The obtained Fe@B/C-2 possessed abundant active sites and low iron ion leaching, and exhibited excellent performance on peroxydisulfate (PDS) activation for efficient PFOS (10 mg/L) degradation (94 %) in 60 min, with 0.2 g/L of catalyst dosage, 1.0 g/L of PDS dosage and at 5.0 of initial pH. The radical scavenging and electron paramagnetic resonance (EPR) tests demonstrated that SO4·- and ·OH were the primary active species during PFOS elimination. Under the attack of these species, PFOS was first transformed into PFOA, followed by a sequential defluorination process, and lastly mineralized into CO2 and F-. Notably, DFT results revealed that Fe species, -BC3/-BC2O structures on the carbon matrix performed crucial roles in PDS activation. The extraordinary catalytic activity of Fe@B/C-2 was attributable to the synergistic effects of Fe nanoparticles and the B-doped on carbon matrix. The doped B not only could activate the inert carbon skeleton and provided more catalytic centers, but also could accelerate the electron transfer efficiency, leading to a boost in PDS decomposition.

2.
Ecotoxicol Environ Saf ; 263: 115364, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37586198

ABSTRACT

As the cheap and efficient catalysts, the iron-based catalysts have been considered as one of the most promising catalysts for peroxydisulfate (PDS) activation and the development of high-performance iron-based catalysts are attracting growing attentions. In this work, a magnetic Fe-based catalysts (Fe/NC-1000) was obtained by using Fe modified ZIF-8 as the precursor and used to activate the PDS for the degradation of perfluorooctane sulphonate (PFOS). Morphology and structure analysis showed that the resulted Fe/NC-1000 catalyst was displayed porous spheres (40-60 nm) and mainly composed of Fe0, FeNx and carbon. When Fe/NC-1000 was employed to activate the PDS (0.1 g/L of catalyst dosage, 0.5 g/L of PDS dosage and at initial pH of 4.6), the Fe/NC-1000/PDS system exhibited excellent efficiency (97.9 ± 0.1) % for PFOS (10 mg/L) degradation within 30 min. The quenching tests and EPR results revealed that the Fe/NC-1000/PDS system degraded PFOS primarily through singlet oxygen (1O2) evolution and electron-transfer process. Besides, based on the degradation byproducts determined by LC-MS-MS, the PFOS first occurred de-sulfonation to form PFOA, and then the resulted PFOA underwent stepwise defluorination in the Fe/NC-1000/PDS system. Density Functional Theory (DFT) calculations and electrochemistry tests strongly confirmed that Fe/NC-1000 exhibited high electron transfer efficiency, resulting in promoted performance on activating PDS. Importantly, the results of Ecological Structure-Activity Relationship (ECOSAR) analysis showed that the intermediates were lowly toxic during the PFOS degradation, manifesting a green process for PFOS removal. This study would provide more understandings for the persulfate activation process mediated by Fe-based catalysts for Perfluorinated alkyl substances (PFAS) elimination.


Subject(s)
Fluorocarbons , Iron , Iron/chemistry , Electrochemistry , Singlet Oxygen , Catalysis
3.
Microorganisms ; 11(5)2023 May 10.
Article in English | MEDLINE | ID: mdl-37317228

ABSTRACT

Early weaning is an effective method for improving the utilization rate of sows in intensive pig farms. However, weaning stress induces diarrhea and intestinal damage in piglets. Berberine (BBR) is known for its anti-diarrhea properties and ellagic acid (EA) is known for its antioxidant properties, however, whether their combination improves diarrhea and intestinal damage in piglets has not been studied, and the mechanism remains unclear. To explore the combined effects in this experiment, a total of 63 weaned piglets (Landrace × Yorkshire) were divided into three groups at 21 days. Piglets in the Ctrl group were treated with a basal diet and 2 mL saline orally, while those in the BE group were treated with a basal diet supplemented with 10 mg/kg (BW) BBR, 10 mg/kg (BW) EA, and 2 mL saline orally. Piglets in the FBE group were treated with a basal diet and 2 mL fecal microbiota suspension from the BE group orally, respectively, for 14 days. Compared with the Ctrl group, dietary supplementation with BE improved growth performance by increasing the average daily gain and average daily food intake and reducing the fecal score in weaned piglets. Dietary supplementation with BE also improved intestinal morphology and cell apoptosis by increasing the ratio of villus height to crypt depth and decreasing the average optical density of apoptotic cells; meanwhile, improvements also involved attenuating oxidative stress and intestinal barrier dysfunction by increasing the total antioxidant capacity, glutathione, and catalase, and upregulating the mRNA expressions of Occludin, Claudin-1, and ZO-1. Interestingly, the oral administration of a fecal microbiota suspension to piglets fed BE had similar effects to those of the BE group. According to 16S rDNA sequencing analysis, dietary supplementation with BE altered the composition of the microbiota, including firmicutes, bacteroidetes, lactobacillus, phascolarctobacterium, and parabacteroides, and increased the metabolites of propionate and butyrate. In addition, Spearman analysis revealed that improvements in growth performance and intestinal damage were significantly correlated with differential bacteria and short-chain fatty acids (SCFAs). In brief, dietary supplementation with BE improved the growth performance and intestinal damage by altering the gut microbiota composition and SCFAs in weaned piglets.

4.
J Am Soc Mass Spectrom ; 34(7): 1342-1348, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37294877

ABSTRACT

Rehmannia glutinosa (Gaert.) Libosch. ex Fisch. et Mey. is a perennial herb of the Scrophulariaceae family, which has long enjoyed a good reputation in China, and has a wide range of pharmacological effects and clinical applications. The place of origin is an important factor affecting the chemical composition of R. glutinosa, resulting in different pharmacological effects. Herein, internal extractive electrospray ionization mass spectrometry (iEESI-MS) combined with statistical techniques was established for high-throughput molecular differentiation of different R. glutinosa samples. Dried and processed R. glutinosa samples from four different places of origin were analyzed by iEESI-MS with high throughput (>200 peaks) and rapidness (<2 min/sample) without sample pretreatment. Clear separation models created by OPLS-DA were then established for distinguishing the places of origin of dried and processed R. glutinosa by using the obtained MS data. In addition, the molecular differences between the pharmacological effects of dried and processed R. glutinosa were also investigated by OPLS-DA, and 31 different components were screened out. This work provides a promising method for evaluating the quality of traditional Chinese medicines and studying the biochemical mechanism of processing.


Subject(s)
Rehmannia , Spectrometry, Mass, Electrospray Ionization , Rehmannia/chemistry
5.
J Colloid Interface Sci ; 641: 289-298, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36934576

ABSTRACT

Bimetallic oxide is a potential catalyst for oxidative desulfurization of fuel. Thus, an appropriate method is needed to improve its catalytic performance. Manufacturing defect is an effective means. In this contribution, an oxygen vacancies (OVs) regulation strategy for enhancing the catalytic activity of bimetallic oxide is proposed. Density functional theory (DFT) calculations show that the crystal phase has a huge influence on the generation energy of oxygen vacancies, so a series of V-Nb mixed oxide with different crystal phases are synthesized. Detailed characterizations show that the as-prepared tetragonal V-Nb mixed oxide (T-VNbOx) has lower OVs formation energy and larger OVs concentration (compared to orthorhombic V-Nb mixed oxides, O-VNbOx). Owing to the activation of OVs, the catalytic activity of T-VNbOx was significantly enhanced to form ultra-deep oxidative desulfurization. In addition, T-VNbOx can be cycled eight times without significantly degrading the desulfurization performance.

6.
Water Res ; 235: 119892, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36996754

ABSTRACT

Enriching and detecting the trace pollutants in actual matrices are critical to evaluating the water quality. Herein, a novel nanofibrous membrane, named PAN-SiO2@TpPa, was prepared by in situ growing ß-ketoenamine-linked covalent organic frameworks (COF-TpPa) on the aminated polyacrylonitrile (PAN) nanofibers, and adopted for enriching the trace polychlorinated biphenyls (PCBs) in various natural water body (river, lake and sea water) through the solid-phase micro-extraction (SPME) process. The resulted nanofibrous membrane owned abundant functional groups (-NH-, -OH and aromatic groups), outstandingly thermal and chemical stability, and excellent ability in extracting PCBs congeners. Based on the SPME process, the PCBs congeners could be quantitatively analyzed by the traditional gas chromatography (GC) method, with the satisfactory linear relationship (R2>0.99), low detection limit (LODs, 0.1∼5 ng L-1), high enrichment factors (EFs, 2714∼3949) and multiple recycling (>150 runs). Meanwhile, when PAN-SiO2@TpPa was adopted in the real water samples, the low matrix effects on the enrichment of PCBs at both 5 and 50 ng L-1 over PAN-SiO2@TpPa membrane firmly revealed the feasibility of enriching the trace PCBs in real water. Besides, the related mechanism of extracting PCBs on PAN-SiO2@TpPa mainly involved the synergistic effect of hydrophobic effect, π-π stacking and hydrogen bonding.


Subject(s)
Metal-Organic Frameworks , Nanofibers , Polychlorinated Biphenyls , Metal-Organic Frameworks/chemistry , Nanofibers/analysis , Silicon Dioxide , Solid Phase Extraction
7.
Foods ; 12(6)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36981079

ABSTRACT

Ginseng, a kind of functional food and medicine with high nutritional value, contains various pharmacological metabolites that influence human metabolic functions. Therefore, it is very important to analyze the composition and metabolites of ginseng. However, the analysis of active metabolites in ginseng samples usually involves various experimental steps, such as extraction, chromatographic separation, and characterization, which may be time-consuming and laborious. In this study, an internal extractive electrospray ionization mass spectrometry (iEESI-MS) method was developed to analyze active metabolites in ginseng samples with sequential sampling and no pretreatment. A total of 44 metabolites, with 32 ginsenosides, 6 sugars, and 6 organic acids, were identified in the ginseng samples. The orthogonal partial least-squares discriminant analysis (OPLS-DA) score plot showed a clear separation of ginseng samples from different origins, indicating that metabolic changes occurred under different growing conditions. This study demonstrated that different cultivation conditions of ginseng can be successfully discriminated when using iEESI-MS-based metabolite fingerprints, which provide an alternative solution for the quality identification of plant drugs.

8.
Anal Chem ; 95(10): 4728-4734, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36802376

ABSTRACT

The information regarding the occurrence and abundance of lead (Pb) in PM2.5 is useful for the evaluation of air pollution status and tracing the pollution source. Herein, electrochemical mass spectrometry (EC-MS) for sequential determination of Pb species in PM2.5 samples without sample pretreatment has been developed using the combination of online sequential extraction with mass spectrometry (MS) detection. Four kinds of Pb species including water-soluble Pb compounds, fat-soluble Pb compounds, water/fat-insoluble Pb compounds, and a water/fat-insoluble Pb element were sequentially extracted from PM2.5 samples, in which water-soluble Pb compounds, fat-soluble Pb compounds, and water/fat-insoluble Pb compounds were extracted sequentially by elution using H2O, CH3OH, and EDTA-2Na as the eluent respectively, while the water/fat-insoluble Pb element was extracted by electrolysis using EDTA-2Na as the electrolyte. The extracted water-soluble Pb compounds, water/fat-insoluble Pb compounds, and water/fat-insoluble Pb element were transformed into EDTA-Pb in real time for online electrospray ionization mass spectrometry analysis, while the extracted fat-soluble Pb compounds were directly detected by electrospray ionization mass spectrometry. The advantages of the reported method include the obviation of sample pretreatment, high speed of analysis (<60 min/sample), low detection limit (0.16 pg), low sample consumption (30 µg), and high accuracy (>90%), which indicates the potential of this method for the rapid quantitative species detection of metals in environmental particulate matter samples.

9.
Chemosphere ; 315: 137731, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36608878

ABSTRACT

Flumequine (FLU) and nadifloxacin (NAD), as emerging contaminants, have received extensive attention recently. In this study, a triazine-based microporous organic network (TMON) was synthetized and developed as an excellent adsorbent for FLU and NAD. The adsorption behavior and influence factors were investigated in both single and binary systems. Insight into the adsorption mechanisms were conducted through experiments, models, and computational studies, from macro and micro perspectives including functional groups, adsorption sites, adsorption energy and frontier molecular orbital. The results showed that the maximum adsorption capacities of TMON for FLU and NAD are 325.27 and 302.28 mg/g under 30 °C higher than records reported before. TMON exhibits the better adaptability and anti-interference ability for influence factors, leading to the preferable application effect in kinds of real water samples. TMON also shows the application potentials for the adsorption of other quinolone antibiotics and CO2 capture. Hydrogen-bonding interaction played the most critical role compared to π-π stacking effect, π-π electron-donor-acceptor interaction, CH-π interaction, and hydrophobic interaction during the adsorption. TMON could be regarded as a promising environmental adsorbent for its large surface area, stable physical and chemical properties, excellent recyclability, and wide range of applications.


Subject(s)
Triazines , Water Pollutants, Chemical , Adsorption , NAD , Water Pollutants, Chemical/analysis
10.
Metabolites ; 12(8)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35893243

ABSTRACT

Ulcerative colitis (UC) is one of the primary types of inflammatory bowel disease, the occurrence of which has been increasing worldwide. Research in recent years has found that the level of lysozyme in the feces and blood of UC patients is abnormally elevated, and the bacterial product after the action of lysozyme can be used as an agonist to recognize different cell pattern receptors, thus regulating the process of intestinal inflammation. Berberine (BBR), as a clinical anti-diarrhea and anti-inflammatory drug, has been used in China for hundreds of years. In this study, results showed that BBR can significantly inhibit the expression and secretion of lysozyme in mice. Therefore, we try to investigate the mechanism behind it and elucidate the new anti-inflammatory mechanism of BBR. In vitro, lipopolysaccharide (LPS) was used to establish an inflammatory cell model, and transcriptomic was used to analyze the differentially expressed genes (DEGs) between the LPS group and the LPS + BBR treatment group. In vivo, dextran sulfate sodium salt (DSS) was used to establish a UC mice model, and histologic section and immunofluorescence trails were used to estimate the effect of BBR on UC mice and the expression of lysozyme in Paneth cells. Research results showed that BBR can inhibit the expression and secretion of lysozyme by promoting autophagy via the AMPK/MTOR/ULK1 pathway, and BBR promotes the maturation and expression of lysosomes. Accordingly, we conclude that inhibiting the expression and secretion of intestinal lysozyme is a new anti-inflammatory mechanism of BBR.

11.
Open Life Sci ; 17(1): 455-462, 2022.
Article in English | MEDLINE | ID: mdl-35611144

ABSTRACT

Embryonic stem cells (ESCs) differentiation is a process of replication and refinement, and the directional lineage differentiation of ESCs involves the epithelial-mesenchymal transition (EMT)- mesenchymal-epithelial transition (MET) process. A previous study revealed that Zinc finger E-box-binding homeobox 1 (Zeb1) plays a vital role in EMT, which could repress E-cadherin promoter and induce an EMT in cells. To verify the expression of Zeb1 and its correlation with Lin28a in mouse ESCs differentiation, we performed qRT-PCR and western blots to detect the expression of Lin28a mRNA and protein after Zeb1 knockdown. The expression of Zeb1 decreased over time of mouse ESCs differentiation but significantly increased in mouse embryonal carcinoma cells. After knockdown of Zeb1, Lin28a and Vimentin expression were decreased, while E-cadherin expression increased both in mouse ESCs, EBs, GC1, and P19 cells. We found that Zeb1 promoted the invasive ability of mouse embryonal carcinoma cells. These results revealed that expression of Zeb1 decreased during the differentiation of ESCs, and Lin28a and EMT processes can be regulated by Zeb1, which need to be verified in the future studies.

12.
J Healthc Eng ; 2022: 5622482, 2022.
Article in English | MEDLINE | ID: mdl-35463677

ABSTRACT

Background: Despite the increasing number of skin adverse drug reactions caused by nadroparin calcium have been reported, mostly, little is known regarding of their details of clinical characteristics, especially for generalized skin adverse drug reactions. We sought to evaluate localized and generalized characteristics of the skin adverse drug reaction to nadroparin calcium injection in pregnant women. Methods: A retrospective study was conducted on 6 pregnant women, who experienced localized and generalized skin adverse drug reactions during long-term nadroparin calcium injection. The patients' clinical and imaging information were retrieved from medical records. The skin prick test, patch test, and intradermal test were performed after they stopped lactation. Causality assessment of suspected adverse drug reactions was performed on these cases. Results: The average total dose of nadroparin calcium injection in the 6 cases was 64.17 ± 22.66. Localized skin adverse drug reaction, manifested as erythema at the injection point, appeared after 47.5 ± 17.4 days of subcutaneous injection of nadroparin calcium. Generalized urticaria-like lesions, progressing from the injection site on the abdomen, appeared in 5.17 ± 3.60 days after the first appearance of localized reaction, while laboratory test results revealed essential peripheral blood eosinophilia. All rashes in the 6 cases subsided in 2-5 weeks after drug withdrawal. After delivery, 5 of 6 cases received complete skin tests to evaluate drug hypersensitivity. Results presented positive in the intradermal test within 7 days. Both the skin prick test and skin patch test were negative. Localized skin reactions and generalized urticaria-like adverse drug reactions were considered as definitely and probably caused by nadroparin calcium injection, respectively. Conclusion: Subcutaneous injection of nadroparin calcium in pregnant women appears to be at risk of localized and generalized urticaria-like adverse drug reaction. It is important to follow up the pregnant woman during nadroparin calcium injection for evaluating adverse drug reactions. Timely detection of symptoms is pivotal in early diagnosis and treatment of adverse drug reactions.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Urticaria , Female , Humans , Nadroparin/adverse effects , Pregnancy , Pregnant Women , Retrospective Studies , Urticaria/chemically induced
13.
Nutrients ; 14(5)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35268045

ABSTRACT

Taxifolin is a bioflavonoid which has been used to treat Inflammatory Bowel Disease. However, taxifolin on DSS-induced colitis and gut health is still unclear. Here, we studied the effect of taxifolin on DSS-induced intestinal mucositis in mice. We measured the degree of intestinal mucosal injury and inflammatory response in DSS treated mice with or without taxifolin administration and studied the changes of fecal metabolites and intestinal microflora using 16S rRNA. The mechanism was further explored by fecal microbiota transplantation. The results showed that the weight loss and diarrhea score of the mice treated with taxifolin decreased in DSS-induced mice and longer colon length was displayed after taxifolin supplementation. Meanwhile, the expression of GPR41 and GPR43 in the colon was significantly increased by taxifolin treatment. Moreover, the expression of TNF-α, IL-1ß, and IL-6 in colon tissue was inhibited by taxifolin treatment. The fecal metabolism pattern changed significantly after DSS treatment, which was reversed by taxifolin treatment. Importantly, taxifolin significantly increased the levels of butyric acid and isobutyric acid in the feces of DSS-treated mice. In terms of gut flora, taxifolin reversed the changes of Akkermansia, and further decreased uncultured_bacterium_f_Muribaculaceae. Fecal transplantation from taxifolin-treated mice showed a lower diarrhea score, reduced inflammatory response in the colon, and reduced intestinal mucosal damage, which may be related to the increased level of butyric acid in fecal metabolites. In conclusion, this study provides evidence that taxifolin can ameliorate DSS-induced colitis by altering gut microbiota to increase the production of SCFAs.


Subject(s)
Colitis, Ulcerative , Gastrointestinal Microbiome , Animals , Butyric Acid/pharmacology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Dextran Sulfate/pharmacology , Mice , Quercetin/analogs & derivatives , RNA, Ribosomal, 16S
14.
J Hazard Mater ; 424(Pt B): 127455, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34653862

ABSTRACT

Detecting and analyzing of the trace organochlorine pesticides (OCPs) in the real water has become a big challenge. In this work, a novel functional electrospun nanofiber membrane (PAN@COFs) was synthesized through the in situ growth of covalent organic frameworks (COFs) on a polyacrylonitrile electrospun nanofiber membranes under room temperature and used in the solid-phase micro-extraction (SPME) to enrich trace organochlorine pesticides (OCPs) in water. The resulted PAN@COFs composite consisted of numerous nanofibers coated ample porous COFs spheres (~ 500 nm) and owned stable crystal structure, abundant functional groups, good stability. In addition, the enrichment experiments clearly revealed that PAN@COFs exhibited rather outstanding performance on adsorbing the trace OCPs (as low as 10 ng L-1) with the enrichment of 482-2686 times. Besides, PAN@COFs displayed good reusability and could be reused 100 times. Notably, in the real water samples (sea water and river water), the high enrichment factors and recovery rates strongly confirmed the feasibility of PAN@COFs for detecting the trace OCPs. Furthermore, due to the synergy of π-π stacking interaction and hydrophobic interaction between the OCPs molecules and PAN@COFs, the OCPs could be efficiently adsorbed on PAN@COFs, even under the extremely low driving force.


Subject(s)
Hydrocarbons, Chlorinated , Metal-Organic Frameworks , Nanofibers , Pesticides , Acrylic Resins , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis
15.
J Colloid Interface Sci ; 610: 24-34, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34920214

ABSTRACT

In this study, the S modified iron-based catalyst (S-Fe@C) for activating peroxydisulfate (PDS) was fabricated by heating the S-MIL-101 (Fe) precursor at 800 °C. The resulted S-Fe@C composite mainly consisted of carbon, Fe0, FeS, FeS2, and Fe3O4, and showed strong magnetism. Compared with Fe@C obtained from MIL-101 (Fe), the S-Fe@C exhibited much higher performance (1.5 times larger) on PDS activation and the S-Fe@C/PDS could rapidly degrade various organic pollutants in 5 min under the attack of the species of SO4-·, 1O2, electro-transfer and Fe(IV). The S element in enhancing the PDS activation mainly involved two mechanisms. Firstly, the doped S could speed up the electron transfer efficiency, resulting in a promotion on PDS decomposition; secondly, the S2- S22- or S0 could achieve the circulation of Fe2+ and Fe3+, leading to the formation of non-radicals Fe(IV) and 1O2.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Catalysis , Iron , Sulfur , Water Pollutants, Chemical/analysis
16.
Environ Res ; 207: 112184, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34627800

ABSTRACT

In this study, a bimetallic composite catalyst (Co-Fe@C) was fabricated with calcination at high temperature (800 °C) by using Co-MIL-101 (Fe) as the precursor. The characterization results showed that the resulted Co-Fe@C composite mainly consisted of carbon, FeCo alloys, Fe3O4, Co3O4 and FeO, and owned evident magnetism. In addition, the Co-Fe@C was employed to activate the peroxydisulfate (PDS) to degrade a representative organic pollutant (p-arsanilic acid, p-ASA) and the main factors were optimized, which involved 0.2 g L-1 of catalyst dosage, 1.0 g L-1 of PDS dosage and 5.0 of initial pH. Under the optimal condition, Co-Fe@C/PDS system could completely degrade p-ASA (20 mg L-1) in 5 min. In the Co-Fe@C/PDS system, SO4-·, Fe(IV) and ·OH were the main species during p-ASA degradation. Under the attack of these species, p-ASA was first decomposed into phenols and then transformed into the organics acids and finally mineralized into CO2 and H2O through a series of reactions like hydroxylation, dearsenification, deamination and benzene ring opening. Importantly, most of the released inorganic arsenic species (93.40%) could be efficiently adsorbed by the catalyst.


Subject(s)
Arsanilic Acid , Arsenic , Catalysis , Cobalt , Oxides
17.
Chemosphere ; 285: 131542, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34329122

ABSTRACT

Currently, Tetrabromobisphenol A (TBBPA) has been regarded as an emerging organic pollutant and efficient TBBPA elimination technology has been attracting increasing attention. In this work, a novel photocatalyst, MoS2/SnIn4S8, was synthesized through hydrothermal method by introducing few-layer MoS2 nanosheets and then employed to establish an integrated photocatalytic reduction/oxidation system for the remediation of TBBPA under visible light. The characterization results demonstrated that the few-layer MoS2 nanosheets were well combined with SnIn4S8 and significantly lowered the recombination rate of the photo-induced electron and holes, leading to outstanding photocatalytic performance of MoS2/SnIn4S8 composite. Besides, the MoS2/SnIn4S8 composite also exhibited excellent reusability (over 10 runs) and stability. The TBBPA degradation experiments showed that the integrated photocatalytic reduction/oxidation system was able to completely degrade TBBPA and mineralize its byproducts (60.2 ± 2.9%). In the photocatalytic reduction, due to the cleavage of C-Br bonds by photo-induced electrons, TBBPA underwent stepwise debromination and finally transferred into BPA in 6 h. In the following photocatalytic oxidation, under the attack of reactive oxygen species (1O2, h+,OH and O2-), BPA was first decomposed into aromatic products (such as phenol, benzoic acid, p-hydroxybenzyl alcohol and so on) via C-C bond cracking and hydroxylation, and then further oxidized into organic acids like maleic acid and muconic acid through ring-opening, and finally mineralized into CO2 and H2O. What was noteworthy was that the final effluent from the photocatalytic reduction/oxidation system showed no toxicity to the luminescent bacteria.


Subject(s)
Molybdenum , Polybrominated Biphenyls , Catalysis , Piperidines
18.
Front Cell Dev Biol ; 9: 671704, 2021.
Article in English | MEDLINE | ID: mdl-34235146

ABSTRACT

Hypoxia-inducible factor 1α (HIF-1α) plays pivotal roles in maintaining pluripotency, and the developmental potential of pluripotent stem cells (PSCs). However, the mechanisms underlying HIF-1α regulation of neural stem cell (NSC) differentiation of human induced pluripotent stem cells (hiPSCs) remains unclear. In this study, we demonstrated that HIF-1α knockdown significantly inhibits the pluripotency and self-renewal potential of hiPSCs. We further uncovered that the disruption of HIF-1α promotes the NSC differentiation and development potential in vitro and in vivo. Mechanistically, HIF-1α knockdown significantly enhances mitofusin2 (MFN2)-mediated Wnt/ß-catenin signaling, and excessive mitochondrial fusion could also promote the NSC differentiation potential of hiPSCs via activating the ß-catenin signaling. Additionally, MFN2 significantly reverses the effects of HIF-1α overexpression on the NSC differentiation potential and ß-catenin activity of hiPSCs. Furthermore, Wnt/ß-catenin signaling inhibition could also reverse the effects of HIF-1α knockdown on the NSC differentiation potential of hiPSCs. This study provided a novel strategy for improving the directed differentiation efficiency of functional NSCs. These findings are important for the development of potential clinical interventions for neurological diseases caused by metabolic disorders.

19.
Chemosphere ; 271: 129452, 2021 May.
Article in English | MEDLINE | ID: mdl-33434825

ABSTRACT

Considering the high environmental risk, the remediation of veterinary drug pollutants aroused numerous concerning. In this paper, a novel photocatlyst, SnO2/SnIn4S8, was fabricated by in situ precipitation and hydrothermal method and then employed to simulate photocatalytic degradation of olaquindox under visible light. The SEM, TEM, XRD, XPS and electrochemical results clearly showed that the n-type heterojunction between SnO2 and SnIn4S8 was successfully constructed, which greatly reduce the recombination of the photogenic electron and holes, leading to the improvement of photocalytic performance and stability (recycled over 10 times). Besides, the SnO2/SnIn4S8 composite also exhibited good ability to mineralize the olaquindox. Under the optimal condition (pH of 3, 1 g L-1 of 30 wt% SnO2/SnIn4S8 and 10 mg L-1 of initial olaquindox concentration), the olaquindox could be fully and rapidly degraded in 25 min, and completely mineralized in 2 h (99.3 ± 1.7%). LC-QTOF-MS analysis evidently displayed 10 intermediates during the olaquindox degradation. In addition, with the attack of the reactive oxygen species (h+, •OH and •O2-), olaquindox could be effectively decomposed via deoxygenation, hydroxylation and carboxylation reactions. Importantly, compared to photodegradation, the photocatalytic process was an ideal way to eliminate the olaquindox form water because it could avoid the accumulation of toxic byproducts.


Subject(s)
Veterinary Drugs , Catalysis , Light , Photolysis , Piperidines
20.
RSC Adv ; 11(8): 4407-4416, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-35424418

ABSTRACT

A spherical cellulose adsorbent embedded with black wattle extract (SABW) was prepared by an inverse suspension method, and used to adsorb the typical food pigment, gardenia yellow pigment (GYP). Results of SEM, XRD, FTIR and BET characterization showed that SABW was composed of abundant porous structures and functional groups such as -C[double bond, length as m-dash]O, -OH and benzene ring groups. The batch adsorption experiments revealed that SABW presented excellent adsorption performance for GYP with a high adsorption percentage of 97.96%. The adsorption process followed the Langmuir and Freundlich adsorption isotherm, and the experimental data were in good agreement with the pseudo-second order dynamic model. Furthermore, the main adsorption mechanism involved hydrogen bonding, electrostatic interaction and pore adsorption. Importantly, the desorption and regeneration experiments showed that SABW had satisfactory reusability and retained 92.30% adsorption after 4 cycles. The above results provide a vital theoretical basis for the extraction of GYP.

SELECTION OF CITATIONS
SEARCH DETAIL
...