Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Adv Mater ; : e2402232, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684179

ABSTRACT

Recently, the real topology has been attracting widespread interest in two dimensions (2D). Here, based on first-principles calculations and theoretical analysis, the monolayer Cr2Se2O (ML-CrSeO) is revealed as the first material example of a 2D antiferromagnetic (AFM) real Chern insulator (RCI) with topologically protected corner states. Unlike previous RCIs, it is found that the real topology of the ML-CrSeO is rooted in one certain mirror subsystem of the two spin channels, and cannot be directly obtained from all the valence bands in each spin channel as commonly believed. In particular, due to antiferromagnetism, the corner modes in ML-CrSeO exhibit strong corner-contrasted spin polarization, leading to spin-corner coupling (SCC). This SCC enables a direct connection between spin space and real space. Consequently, large and switchable net magnetization can be induced in the ML-CrSeO nanodisk by electrostatic means, such as potential step and in-plane electric field, and the corresponding magnetoelectric responses behave like a sign function, distinguished from that of the conventional multiferroic materials. This work considerably broadens the candidate range of RCI materials, and opens up a new direction for topo-spintronics and 2D AFM materials research.

2.
Plants (Basel) ; 13(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38475589

ABSTRACT

RNAs play important roles in regulating biological growth and development. Advancements in RNA-imaging techniques are expanding our understanding of their function. Several common RNA-labeling methods in plants have pros and cons. Simultaneously, plants' spontaneously fluorescent substances interfere with the effectiveness of RNA bioimaging. New technologies need to be introduced into plant RNA luminescence. Aggregation-induced emission luminogens (AIEgens), due to their luminescent properties, tunable molecular size, high fluorescence intensity, good photostability, and low cell toxicity, have been widely applied in the animal and medical fields. The application of this technology in plants is still at an early stage. The development of AIEgens provides more options for RNA labeling. Click chemistry provides ideas for modifying AIEgens into RNA molecules. The CRISPR/Cas13a-mediated targeting system provides a guarantee of precise RNA modification. The liquid-liquid phase separation in plant cells creates conditions for the enrichment and luminescence of AIEgens. The only thing that needs to be looked for is a specific enzyme that uses AIEgens as a substrate and modifies AIEgens onto target RNA via a click chemical reaction. With the development and progress of artificial intelligence and synthetic biology, it may soon be possible to artificially synthesize or discover such an enzyme.

3.
Diabetes Metab J ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38408883

ABSTRACT

Background: Diabetes-induced cardiac fibrosis is one of the main mechanisms of diabetic cardiomyopathy. As a common histone methyltransferase, enhancer of zeste homolog 2 (EZH2) has been implicated in fibrosis progression in multiple organs. However, the mechanism of EZH2 in diabetic myocardial fibrosis has not been clarified. Methods: In the current study, rat and mouse diabetic model were established, the left ventricular function of rat and mouse were evaluated by echocardiography and the fibrosis of rat ventricle was evaluated by Masson staining. Primary rat ventricular fibroblasts were cultured and stimulated with high glucose (HG) in vitro. The expression of histone H3 lysine 27 (H3K27) trimethylation, EZH2, and myocardial fibrosis proteins were assayed. Results: In STZ-induced diabetic ventricular tissues and HG-induced primary ventricular fibroblasts in vitro, H3K27 trimethylation was increased and the phosphorylation of EZH2 was reduced. Inhibition of EZH2 with GSK126 suppressed the activation, differentiation, and migration of cardiac fibroblasts as well as the overexpression of the fibrotic proteins induced by HG. Mechanical study demonstrated that HG reduced phosphorylation of EZH2 on Thr311 by inactivating AMP-activated protein kinase (AMPK), which transcriptionally inhibited peroxisome proliferator-activated receptor γ (PPAR-γ) expression to promote the fibroblasts activation and differentiation. Conclusion: Our data revealed an AMPK/EZH2/PPAR-γ signal pathway is involved in HG-induced cardiac fibrosis.

4.
Nat Commun ; 14(1): 6636, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37857622

ABSTRACT

Higher-order Weyl semimetals are a family of recently predicted topological phases simultaneously showcasing unconventional properties derived from Weyl points, such as chiral anomaly, and multidimensional topological phenomena originating from higher-order topology. The higher-order Weyl semimetal phases, with their higher-order topology arising from quantized dipole or quadrupole bulk polarizations, have been demonstrated in phononics and circuits. Here, we experimentally discover a class of higher-order Weyl semimetal phase in a three-dimensional photonic crystal (PhC), exhibiting the concurrence of the surface and hinge Fermi arcs from the nonzero Chern number and the nontrivial generalized real Chern number, respectively, coined a real higher-order Weyl PhC. Notably, the projected two-dimensional subsystem with kz = 0 is a real Chern insulator, belonging to the Stiefel-Whitney class with real Bloch wavefunctions, which is distinguished fundamentally from the Chern class with complex Bloch wavefunctions. Our work offers an ideal photonic platform for exploring potential applications and material properties associated with the higher-order Weyl points and the Stiefel-Whitney class of topological phases.

5.
Diabetes Metab Syndr Obes ; 16: 3045-3056, 2023.
Article in English | MEDLINE | ID: mdl-37810573

ABSTRACT

Purpose: Diabetes mellitus is an independent risk factor for atrial fibrillation (AF), which may be related to accumulation of advanced glycation end products (AGEs). However, the mechanisms involved are not completely clear. Abnormality of gap junction proteins, especially connexin 43 (Cx43) and connexin 40 (Cx40) in atrial myocytes, is an important cause of increased susceptibility of AF. The aim of our work is to investigate the mechanism of dysregulated Cx43 and Cx40 in atrial myocytes of diabetic rats. Methods: We established a type 1 diabetic rat model by intraperitoneal injection of streptozotocin. HL-1 cells and primary rat atrial myocytes were treated with AGEs in vitro. Using Western blotting, immunofluorescence staining, immunohistochemistry, and lucifer yellow diffusion measurements, we investigated dysregulation of Cx43 and Cx40 and its mechanism in atrial myocytes of diabetic rats. Results: Accumulation of AGEs was found in diabetic rats. The expression of Cx43 and Cx40 was reduced in the atrium of diabetic rats, accompanied by the decrease of phosphorylated Adenosine 5'-monophosphate-activated protein kinase (p-AMPK). Similar results were found in cultured HL-1 cells and primary rat atrial myocytes, suggesting a role of AGEs on gap junction proteins. An AMPK agonist, 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR), reversed the down-regulated Cx43 expression induced by AGEs stimulation. More importantly, lucifer yellow diffusion assay showed that AGEs significantly affected gap junctional function, and these changes were reversed by AICAR. Conclusion: Thus, we conclude that AGEs cause dysregulation of Cx43 and Cx40 in diabetic atria via the AMPK pathway, thereby leading to gap junction dysfunction, which may contribute to the increased AF susceptibility in diabetes.

6.
Clin Cardiol ; 46(5): 567-573, 2023 May.
Article in English | MEDLINE | ID: mdl-36951364

ABSTRACT

BACKGROUND: This study's intent is to evaluate the usefulness of pattern matching filter (PMF) function combined with robotic magnetic navigation (RMN) in guiding the ablation of premature ventricular contractions (PVCs). HYPOTHESIS: Assume that PMF can improve the outcomes of PVCs ablation using RMN. METHODS: A retrospective analysis was completed consisting of 118 consecutive patients with PVCs who underwent radiofrequency ablation guided by RMN. According to the application of PMF, patients were divided into two groups: 20 patients underwent ablation without PMF (group A), and another 98 patients received ablation incorporating PMF (group B). RESULTS: Compared with group A, the procedure time (135.0 ± 28.3 min vs. 106.3 ± 37.9 min, p = 0.02) in group B was significantly decreased, while the X-ray exposure time (6.0 ± 2.6 min vs. 6.5 ± 3.6 min, p = 0.705) and dose (3.2 ± 2.4 gycm2 vs. 3.9 ± 2.7 gycm2 ,p = 0.208) had no significant difference. Group B had a more than twofold number of points acquired (66.9 ± 23.0 vs. 143.9 ± 68.3, p < 0.001) and required a shorter radiofrequency ablation time (13.2 ± 3.5 min vs. 8.1 ± 2.9 min, p < 0.001). There were no serious complications in either group. The acute success rate was similar [90.0% (18/20) vs. 87.8% (86/98), p = 1.000] in two groups, and the success rate was also similar in the long-term follow-up [83.3% (15/18) vs. 87.2% (75/86), p = 0.776]. CONCLUSIONS: The ablation of PVCs guided by RMN is safe and effective. Combined with the functional capability of PMF, both procedure time and radiofrequency ablation time were significantly decreased.


Subject(s)
Catheter Ablation , Radiofrequency Ablation , Robotic Surgical Procedures , Ventricular Premature Complexes , Humans , Ventricular Premature Complexes/diagnosis , Ventricular Premature Complexes/surgery , Retrospective Studies , Robotic Surgical Procedures/adverse effects , Treatment Outcome , Catheter Ablation/adverse effects , Catheter Ablation/methods , Magnetic Phenomena
7.
Sci Bull (Beijing) ; 68(4): 417-423, 2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36740530

ABSTRACT

The bulk-boundary correspondence is a critical concept in topological quantum materials. For instance, a quantum spin Hall insulator features a bulk insulating gap with gapless helical boundary states protected by the underlying Z2 topology. However, the bulk-boundary dichotomy and distinction are rarely explored in optical experiments, which can provide unique information about topological charge carriers beyond transport and electronic spectroscopy techniques. Here, we utilize mid-infrared absorption micro-spectroscopy and pump-probe micro-spectroscopy to elucidate the bulk-boundary optical responses of Bi4Br4, a recently discovered room-temperature quantum spin Hall insulator. Benefiting from the low energy of infrared photons and the high spatial resolution, we unambiguously resolve a strong absorption from the boundary states while the bulk absorption is suppressed by its insulating gap. Moreover, the boundary absorption exhibits strong polarization anisotropy, consistent with the one-dimensional nature of the topological boundary states. Our infrared pump-probe microscopy further measures a substantially increased carrier lifetime for the boundary states, which reaches one nanosecond scale. The nanosecond lifetime is about one to two orders longer than that of most topological materials and can be attributed to the linear dispersion nature of the helical boundary states. Our findings demonstrate the optical bulk-boundary dichotomy in a topological material and provide a proof-of-principal methodology for studying topological optoelectronics.

8.
Sci Bull (Beijing) ; 67(4): 375-380, 2022 Feb 26.
Article in English | MEDLINE | ID: mdl-36546089

ABSTRACT

The past decade has witnessed a surge of interest in exploring emergent particles in condensed matter systems. Novel particles, emerged as excitations around exotic band degeneracy points, continue to be reported in real materials and artificially engineered systems, but so far, we do not have a complete picture on all possible types of particles that can be achieved. Here, via systematic symmetry analysis and modeling, we accomplish a complete list of all possible particles in time-reversal-invariant systems. This includes both spinful particles such as electron quasiparticles in solids, and spinless particles such as phonons or even excitations in electric-circuit and mechanical networks. We establish detailed correspondence between the particle, the symmetry condition, the effective model, and the topological character. This obtained encyclopedia concludes the search for novel emergent particles and provides concrete guidance to achieve them in physical systems.

9.
Nat Commun ; 13(1): 7359, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36450711

ABSTRACT

The hypothetical Weyl particles in high-energy physics have been discovered in three-dimensional crystals as collective quasiparticle excitations near two-fold degenerate Weyl points. Such momentum-space Weyl particles carry quantised chiral charges, which can be measured by counting the number of Fermi arcs emanating from the corresponding Weyl points. It is known that merging unit-charged Weyl particles can create new ones with more charges. However, only very recently has it been realised that there is an upper limit - the maximal charge number that a two-fold Weyl point can host is four - achievable only in crystals without spin-orbit coupling. Here, we report the experimental realisation of such a maximally charged Weyl point in a three-dimensional photonic crystal. The four charges support quadruple-helicoid Fermi arcs, forming an unprecedented topology of two non-contractible loops in the surface Brillouin zone. The helicoid Fermi arcs also exhibit the long-pursued type-II van Hove singularities that can reside at arbitrary momenta. This discovery reveals a type of maximally charged Weyl particles beyond conventional topological particles in crystals.

10.
Front Cardiovasc Med ; 8: 777355, 2021.
Article in English | MEDLINE | ID: mdl-34926624

ABSTRACT

Background: The incidence of silent cerebral embolisms (SCEs) has been documented after pulmonary vein isolation using different ablation technologies; however, it is unreported in patients undergoing with atrial fibrillation (AF) ablation using Robotic Magnetic Navigation (RMN). The purpose of this prospective study was to investigate the incidence, risk predictors and probable mechanisms of SCEs in patients with AF ablation and the potential impact of RMN on SCE rates. Methods and Results: We performed a prospective study of 166 patients with paroxysmal or persistent AF who underwent pulmonary vein isolation. Patients were divided into RMN group (n = 104) and manual control (MC) group (n = 62), and analyzed for their demographic, medical, echocardiographic, and risk predictors of SCEs. All patients underwent cerebral magnetic resonance imaging within 48 h before and after the ablation procedure to assess cerebral embolism. The incidence and potential risk factors of SCEs were compared between the two groups. There were 26 total cases of SCEs in this study, including 6 cases in the RMN group and 20 cases in the MC group. The incidences of SCEs in the RMN group and the MC group were 5.77 and 32.26%, respectively (X2 = 20.63 P < 0.05). Univariate logistic regression analysis demonstrated that ablation technology, CHA2DS2-VASc score, history of cerebrovascular accident/transient ischemic attack, and low ejection fraction were significantly associated with SCEs, and multivariate logistic regression analysis showed that MC ablation was the only independent risk factor of SCEs after an AF ablation procedure. Conclusions: Ablation technology, CHA2DS2-VASc score, history of cerebrovascular accident/transient ischemic attack, and low ejection fraction are associated with SCEs. However, ablation technology is the only independent risk factor of SCEs and RMN can significantly reduce the incidence of SCEs resulting from AF ablation. Clinical Trial Registration: ChiCTR2100046505.

11.
Nano Lett ; 21(20): 8749-8755, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34609886

ABSTRACT

Nodal monoloop, enjoying the cleanest scenario with a single loop, is recognized as the basic building block of intricate linked loops including chains, nets, and knots. Here, we explore the interplay of magnetic ordering and band topology in one system by introducing a brand-new quantum state, referred to as Weyl monoloop semi-half-metal, which is characterized by a single loop at the Fermi level stemming from the same spin channel. Such a nodal line Fermion, yielding 100% spin polarization, is protected by mirror (Mz) symmetry. As a prominent example, a realistic rutile-type metal fluorides LiV2F6 achieves the hitherto unmaterialized state, featuring fully spin-polarized ultraflat surface states. More interestingly, LiV2F6 has a "soft" ferromagnetic property, which is one of the desired systems to control the anomalous Hall effect by rotating the magnetization direction. Our findings offer a promising candidate for exploring the topology and magnetism with intriguing effects.

12.
Phys Rev Lett ; 125(7): 076801, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32857537

ABSTRACT

A particle beam may undergo an anomalous spatial shift when it is reflected at an interface. The shift forms a vector field defined in the two-dimensional interface momentum space. We show that, although the shift vector at individual momentum is typically sensitive to the system details, its integral along a close loop, i.e., its circulation, could yield a robust quantized number under certain conditions of interest. Particularly, this is the case when the beam is incident from a trivial medium, then the quantized circulation of anomalous shift (CAS) directly manifests the topological character of the other medium. We demonstrate that the topological charge of a Weyl medium as well as the unconventional pair potentials of a superconductor can be captured and distinguished by CAS. Our work unveils a hidden quantized feature in a ubiquitous physical process, which may also offer a new approach for probing topological media.

13.
Phys Rev Lett ; 125(5): 056402, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32794859

ABSTRACT

We propose a universal practical approach to realize magnetic second-order topological insulator (SOTI) materials, based on properly breaking the time reversal symmetry in conventional (first-order) topological insulators. The approach works for both three dimensions (3D) and two dimensions (2D), and is particularly suitable for 2D, where it can be achieved by coupling a quantum spin Hall insulator with a magnetic substrate. Using first-principles calculations, we predict bismuthene on EuO(111) surface as the first realistic system for a two-dimensional magnetic SOTI. We explicitly demonstrate the existence of the protected corner states. Benefitting from the large spin-orbit coupling and sizable magnetic proximity effect, these corner states are located in a boundary gap ∼83 meV, and hence can be readily probed in experiment. By controlling the magnetic phase transition, a topological phase transition between a first-order TI and a SOTI can be simultaneously achieved in the system. The effect of symmetry breaking, the connection with filling anomaly, and the experimental detection are discussed.

14.
Front Physiol ; 11: 453, 2020.
Article in English | MEDLINE | ID: mdl-32547406

ABSTRACT

Diabetic coronary arterial disease is a leading cause of morbidity and mortality in diabetic patients. The impaired function of large-conductance calcium-activated potassium channels (BK channels) is involved in diabetic coronary arterial disease. Many studies have indicated that the reduced BK channel expression in diabetic coronary artery is attributed to ubiquitin-mediated protein degradation by the ubiquitin-proteasome system. This review focuses on the influence and the mechanisms of BK channel regulation by E3 ubiquitin ligases in diabetic coronary arterial disease. Thus, BK channels regulated by E3 ubiquitin ligase may play a pivotal role in the coronary pathogenesis of diabetic mellitus and, as such, is a potentially attractive target for therapeutic intervention.

15.
Ann Transl Med ; 8(4): 127, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32175420

ABSTRACT

BACKGROUND: Heart failure (HF) is an end-stage syndrome of all structural heart diseases which accompanies the loss of myocardium and cardiac fibrosis. Although the role of inflammasome in cardiac fibrosis has recently been a point of focus, the mechanism of inflammasome activation in HF has not yet been elucidated. METHODS: In this study, we investigated the expression of inflammasome proteins in a rat thoracic aorta constriction (TAC) model and cultured cardiac fibroblasts with stimulation of norepinephrine (NE). RESULTS: Our results showed that levels of inflammasome proteins in the myocardial of TAC rats were elevated. By blocking ß-adrenergic signaling in the rats, inflammasome activation was suppressed and heart function was improved. The stimulation of cultured cardiac fibroblasts with NE activated inflammasome in vitro, which was abrogated by the inhibition of the calcium channels and reactive oxygen species (ROS). The activation of inflammasome by NE promoted cardiac fibrosis, whereas the inhibition of the calcium channels, ROS, and inflammasome reduced this effect. CONCLUSIONS: The present study indicated that activation of inflammasome by ß-adrenergic signaling promotes cardiac fibrosis. Therefore, modulation of inflammasome during HF might provide a novel strategy to treat this disease.

16.
Phys Rev Lett ; 124(3): 037701, 2020 Jan 24.
Article in English | MEDLINE | ID: mdl-32031831

ABSTRACT

The current valleytronics research is based on the paradigm of time-reversal-connected valleys in two-dimensional (2D) hexagonal materials, which forbids the fully electric generation of valley polarization by a gate field. Here, we go beyond the existing paradigm to explore 2D systems with a novel valley-layer coupling (VLC) mechanism, where the electronic states in the emergent valleys have a valley-contrasted layer polarization. The VLC enables a direct coupling between a valley and a gate electric field. We analyze the symmetry requirements for a system to host VLC, demonstrate our idea via first-principles calculations and model analysis of a concrete 2D material example, and show that an electric, continuous, wide-range, and switchable control of valley polarization can be achieved by VLC. Furthermore, we find that systems with VLC can exhibit other interesting physics, such as valley-contrasting linear dichroism and optical selection of the valley and the electric polarization of interlayer excitons. Our finding opens a new direction for valleytronics and 2D materials research.

17.
Environ Technol ; 41(23): 3032-3042, 2020 Sep.
Article in English | MEDLINE | ID: mdl-30888252

ABSTRACT

ABSTRACT In this study, autoclaved aerated concrete particles (AACPs) from construction waste were used to simultaneously remove phosphorus and nitrogen in biological aerated filters (BAFs). The effects of air/water (A/W) ratio on the removal performance of phosphorus (PO4 3-), total organic carbon, total nitrogen (TN), and ammonia nitrogen were investigated. Results showed that AACP BAF was more efficient than commercially available ceramsite (CAC) BAF. For example, the removal rates of TN with AACP and CAC were 45.96% and 15.64%, respectively, and those of PO4 3- with AACP and CAC were 72.45% and 33.97%, respectively, at the A/W ratio of 3:1. Different characterization methods were utilized to evaluate the surface shape, elemental compostion, and internal and surface structure of AACP. The interconnectivity and uniformity of pores and the rough surface of AACP were found to be suitable for the growth of microbial biofilm. In addition, the growth of internal pores in AACP promoted the removal of phosphorus and nitrogen. The surface of used AACP contained a small amount of irregular crystals and was covered with a layer of aggregates, which were characterized as hydroxyapatite [HAP, Ca5(OH)(PO4)3]. The formation of HAP as a final byproduct confirmed the successful removal of phosphorus. Therefore, construction wastes, such as AACPs, could be recycled and utilized as a promising biofilter media for excellent wastewater treatment.


Subject(s)
Phosphorus , Wastewater , Bioreactors , Filtration , Nitrogen/analysis , Waste Disposal, Fluid
18.
Nanoscale ; 11(35): 16508-16514, 2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31453618

ABSTRACT

The discovery of two-dimensional (2D) magnetic materials with high critical temperature and intrinsic magnetic properties has attracted significant research interest. By using swarm-intelligence structure search and first-principles calculations, we predict three 2D iron arsenide monolayers (denoted as FeAs-I, II and III) with good energetic and dynamical stabilities. We find that FeAs-I and II are ferromagnets, while FeAs-III is an antiferromagnet. FeAs-I and III have sizable magnetic anisotropy comparable to the magnetic recording materials such as the FeCo alloy. Importantly, we show that FeAs-I and III have critical temperatures of 645 K and 350 K, respectively, which are above room temperature. In addition, FeAs-I and II are metallic, while FeAs-III is semiconducting with a gap comparable to Si. For FeAs-III, there exist two pairs of 2D antiferromagnetic Dirac points below the Fermi level, and it displays a giant magneto band-structure effect. The superior magnetic and electronic properties of the FeAs monolayers make them promising candidates for spintronics applications.

19.
Clin Cardiol ; 42(4): 418-424, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30652336

ABSTRACT

BACKGROUND: No data exist on comparisons of efficacy, safety, and recurrence risk factors of paroxysmal and persistent atrial fibrillation (AF) ablation using robotic magnetic navigation system (MNS), respectively. METHODS: About 151 AF patients were prospectively enrolled and divided into paroxysmal AF group (n = 102) and persistent AF group (n = 49). Circumferential pulmonary vein antrum isolation (CPVI) was performed in all patients. Linear ablation at the left atrial roof and mitral isthmus was performed in patients with persistent AF in addition to CPVI. The procedural time, X-ray exposure time, acute and long-term success rates of CPVI, and procedure-related complications were analyzed. The AF recurrence rates in the two groups were compared during 1 year, and Cox regression was used to analyze the recurrence risk factors. RESULTS: The acute success rates of CPVI in the two groups were 98.04% and 97.96%, respectively. There were no significant differences in the procedural time, X-ray exposure time, and ablation time between the two groups (P > 0.05). No serious complications appeared in either group. The AF ablation success rates were 70.6% and 57.1% for the paroxysmal and persistent groups respectively at 12-month follow-up (P = 0.102). AF duration and coronary heart disease prior to ablation were associated with the higher AF recurrence in patients with persistent AF. CONCLUSION: Ablation using MNS is effective and safe both in patients with paroxysmal and persistent AF. AF duration and coronary heart disease prior to ablation are two independent risk factors of AF recurrence in patients with persistent AF postoperatively.


Subject(s)
Atrial Fibrillation/surgery , Catheter Ablation/methods , Heart Conduction System/physiopathology , Heart Rate/physiology , Pulmonary Veins/surgery , Robotics/instrumentation , Surgery, Computer-Assisted/methods , Adolescent , Adult , Aged , Atrial Fibrillation/diagnosis , Atrial Fibrillation/physiopathology , Echocardiography , Equipment Design , Female , Follow-Up Studies , Heart Atria/diagnostic imaging , Heart Atria/physiopathology , Humans , Male , Middle Aged , Prospective Studies , Recurrence , Risk Factors , Tomography, X-Ray Computed , Treatment Outcome , Young Adult
20.
Phys Rev Lett ; 123(25): 256402, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31922761

ABSTRACT

A second-order topological insulator (SOTI) in d spatial dimensions features topologically protected gapless states at its (d-2)-dimensional boundary at the intersection of two crystal faces, but is gapped otherwise. As a novel topological state, it has been attracting great interest, but it remains a challenge to identify a realistic SOTI material in two dimensions (2D). Here, based on combined first-principles calculations and theoretical analysis, we reveal the already experimentally synthesized 2D material graphdiyne as the first realistic example of a 2D SOTI, with topologically protected 0D corner states. The role of crystalline symmetry, the robustness against symmetry breaking, and the possible experimental characterization are discussed. Our results uncover a hidden topological character of graphdiyne and promote it as a concrete material platform for exploring the intriguing physics of higher-order topological phases.

SELECTION OF CITATIONS
SEARCH DETAIL
...