Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
J Nanobiotechnology ; 22(1): 253, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755600

ABSTRACT

Improving cancer therapy by targeting the adverse tumor microenvironment (TME) rather than the cancer cells presents a novel and potentially effective strategy. In this study, we introduced FexMoyS nanoparticles (NPs), which act as sequential bioreactors to manipulate the TME. FexMoyS NPs were synthesized using thermal decomposition and modified with polyethylene glycol (PEG). Their morphology, chemical composition, and photothermal properties were characterized. The capability to produce ROS and deplete GSH was evaluated. Effects on CRC cells, including cell viability, apoptosis, and glycolysis, were tested through various in vitro assays. In vivo efficacy was determined using CRC-bearing mouse models and patient-derived xenograft (PDX) models. The impact on the MAPK signaling pathway and tumor metabolism was also examined. The FexMoyS NPs showed efficient catalytic activity, leading to increased ROS production and GSH depletion, inducing ferroptosis, and suppressing glycolysis in CRC cells. In vivo, the NPs significantly inhibited tumor growth, particularly when combined with NIR light therapy, indicating a synergistic effect of photothermal therapy and chemodynamic therapy. Biosafety assessments revealed no significant toxicity in treated mice. RNA sequencing suggested that the NPs impact metabolism and potentially immune processes within CRC cells. FexMoyS NPs present a promising multifaceted approach for CRC treatment, effectively targeting tumor cells while maintaining biosafety. The nanoparticles exhibit potential for clinical translation, offering a new avenue for cancer therapy.


Subject(s)
Colorectal Neoplasms , Ferroptosis , Glycolysis , Polyethylene Glycols , Reactive Oxygen Species , Animals , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Humans , Mice , Polyethylene Glycols/chemistry , Ferroptosis/drug effects , Glycolysis/drug effects , Cell Line, Tumor , Tumor Microenvironment/drug effects , Nanoparticles/chemistry , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Mice, Nude , Apoptosis/drug effects , Cell Survival/drug effects , Female , Glutathione/metabolism
2.
Food Chem ; 454: 139657, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38810455

ABSTRACT

Polypropylene (PP) is suitable for a broad range of applications and represents the most extensively utilized plastic in food packaging. Micro- and nano-PP plastics are prevalent categories of microplastics (MPs). However, the majority of MPs particles currently utilized in laboratory studies are man-made polystyrene (PS) spheres, and there has been limited research on micrometer- and nanoscale PP plastic particles. This study aims to employ a top-down approach in crafting micro/nanoparticle (M/NPs) models of PP particles, ensuring their enhanced relevance to real-world environments. Micro/nano PP particles, featuring a negatively charged particle size ranging from 203 to 2101 nm, were synthesized through variations in solution concentration and volume. Simultaneously, the devised MPs model was employed to develop a Raman-based qualitative and quantitative detection method for micro/nano PP particles, considering diverse sizes and concentrations. This method integrates Raman spectroscopy and microscopy to measure PP particles with varying sizes, utilizing the coffee ring effect. The Limit of detection (LOD) for 203 nm PP reached 31.25 µg/mL, while those for 382-2101 nm PP were approximately 3.9 µg/mL. The method underwent quantitative analysis by introducing 203 nm PP nanospheres into real food media (i.e., tea beverages, tea leaves), revealing a minimum LOD of approximately 31.25 µg/mL.

3.
Toxics ; 12(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38787108

ABSTRACT

The contamination of food by microplastics has garnered widespread attention, particularly concerning the health risks associated with small-sized microplastics. However, detecting these smaller microplastics in food poses challenges attributed to the complexity of food matrices and instrumental and method limitations. Here, we employed Raman imaging for visualization and identification of polystyrene particles synthesized in polymerization reactions, ranging from 400 to 2600 nm. We successfully developed a quantitative model of particle size and concentration for polystyrene, exhibiting excellent fit (R2 of 0.9946). We established procedures for spiked flavored yogurt using synthesized polystyrene, providing fresh insights into microplastic extraction efficiency. Recovery rates calculated from models validated the method's feasibility. In practical applications, the assessment of the size, type, shape, and quantity of microplastics in unspiked flavored yogurt was conducted. The most common polymers found were polystyrene, polypropylene, and polyethylene, with the smallest polystyrene sizes ranging from 1 to 10 µm. Additionally, we conducted exposure assessments of microplastics in branded flavored yogurt. This study established a foundation for developing a universal method to quantify microplastics in food, covering synthesis of standards, method development, validation, and application.

4.
Opt Express ; 32(6): 8919-8928, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571137

ABSTRACT

The grating-based magneto-optical trap (GMOT) is a promising approach for miniaturizing cold-atom systems. However, the power consumption of a GMOT system dominates its feasibility in practical applications. In this study, we demonstrated a GMOT system based on planar elements that can operate with low power consumption. A high-diffraction-efficiency grating chip was used to cool atoms with a single incident beam. A planar coil chip was designed and fabricated with a low power consumption nested architecture. The grating and coil chips were adapted to a passive pump vacuum chamber, and up to 106 87Rb atoms were trapped. These elements effectively reduce the power consumption of the GMOT and have great potential for applications in practical cold-atom-based devices.

5.
Food Chem ; 446: 138861, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38430767

ABSTRACT

A ternary complex composed of soybean protein isolated (SPI), tannic acid (TA) and magnesium ion (M) was established to enhance the capability of protein carriers for TA delivery. SPI was firstly covalently bind with TA (TA-SPI) and then M was employed to form the ternary complex (M-TA-SPI). Their structures, gel and digestion properties were further investigated. TA was observed to covalently bind with SPI. TA-SPI and M-TA-SPI complexes showed different molecule size and spatial structures after binding with M and TA. The increasing of TA amount changed the intramolecular interactions, microstructure and texture properties of M-TA-SPI gels. Compared with TA-SPI, M retarded the gastric digestion of M-TA-SPI and caused higher TA release amount in intestinal tract. In this study, M-TA-SPI was determined to be a good carrier to protect and release TA in gastrointestinal digestion. This kind of complex may have potential applications for loading polyphenols in nutraceuticals.


Subject(s)
Magnesium , Soybean Proteins , Soybean Proteins/chemistry , Polyphenols
7.
Nano Lett ; 23(19): 9011-9019, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37676743

ABSTRACT

Freeze-casting has been wildly exploited to construct porous ceramics but usually requires costly and demanding freeze-drying (high vacuum, size limit, and supercooled chamber), which can be avoided by the ambient pressure drying (APD) technique. However, applying APD to freeze-cast ceramic based on an aqueous suspension is still challenging due to inert surface chemistry. Herein, a modified APD strategy is developed to improve the drying process of freeze-cast ceramics by exploiting the simultaneous ice etching, ionic cross-linking, and solvent exchange under mild conditions (-10-0 °C, ambient pressure). This versatile strategy is applicable to various ceramic species, metal ions, and freezing techniques. The incorporated metal ions not only enhance liquid-phase sintering, producing ceramics with higher density and mechanical properties than freeze-cast counterparts, but also render customizable coloration and antibacterial property. The cost-/time-efficient APD is promising for mass production and even successive production of large-size freeze-cast ceramics that exceed the size of commercial freeze-dryers.

8.
Nanoscale ; 15(38): 15749-15760, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37740300

ABSTRACT

Metal/carbon nanotubes (CNTs) have been attractive hybrid systems due to their high specific surface area and exceptional catalytic activity, but their challenging synthesis and dispersion impede their extensive applications. Herein, we report a facile and green approach towards the fabrication of metal/CNT composites, which utilizes a versatile glycopeptide (GP) both as a stabilizer for CNTs in water and as a reducing agent for noble metal ions. The abundant hydrogen bonds in GP endow the formed GP-CNTs with excellent plasticity, enabling the availability of polymorphic CNT species from dispersion to viscous paste, gel, and even to dough by increasing their concentration. The GP molecules can reduce metal precursors at room temperature without additional reducing agents, enabling the in situ immobilization of metal nanoparticles (e.g. Au, Ag, Pt, and Pd) on the CNT surface. The combination of the excellent catalytic properties of Pd particles with photothermal conversion capability of CNTs makes the Pd/CNT composite a promising catalyst for the fast degradation of organic pollutants, as demonstrated by a model catalytic reaction using 4-nitrophenol (4-NP). The conversion of 4-NP using the Pd/CNT composite as the catalyst has increased by 1.6-fold under near infrared light illumination, benefiting from the strong light-to-heat conversion effect of CNTs. Our proposed strategy opens a new avenue for the synthesis of CNT composites as a sustainable and versatile catalyst platform.

9.
Adv Mater ; 35(39): e2303518, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37326618

ABSTRACT

Soft woods have attracted enormous interest due to their anisotropic cellular microstructure and unique flexibility. The conventional wood-like materials are usually subject to the conflict between the superflexibility and robustness. Inspired by the synergistic compositions of soft suberin and rigid lignin of cork wood which has good flexibility and mechanical robustness, an artificial soft wood is reported by freeze-casting the soft-in-rigid (rubber-in-resin) emulsions, where the carboxy nitrile rubber confers softness and rigid melamine resin provides stiffness. The subsequent thermal curing induces micro-scale phase inversion and leads to a continuous soft phase strengthened by interspersed rigid ingredients. The unique configuration ensures crack resistance, structural robustness and superb flexibility, including wide-angle bending, twisting, and stretching abilities in various directions, as well as excellent fatigue resistance and high strength, overwhelming the natural soft wood and most wood-inspired materials. This superflexible artificial soft wood represents a promising substrate for bending-insensitive stress sensors.

10.
JAMA Netw Open ; 6(5): e2312625, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37195667

ABSTRACT

Importance: Double-agent intravenous chemotherapy concurrent with radiotherapy is the standard of care for patients with inoperable esophageal cancer. However, patients tend to tolerate intravenous chemotherapy less well with age and comorbidities. It is essential to find a better treatment modality that improves survival outcomes without reducing the quality of life. Objective: To evaluate the effectiveness of simultaneous integrated boost radiotherapy (SIB-RT) with concurrent and consolidated oral S-1 chemotherapy for patients aged 70 years and older with inoperable esophageal squamous cell carcinoma (ESCC). Design, Setting, and Participants: This multicenter, phase III randomized clinical trial was conducted between March 2017 and April 2020 in 10 centers in China. Patients with inoperable, locally advanced, clinical stage II to IV ESCC were enrolled and randomized to receive SIB-RT concurrent with and followed by oral S-1 chemotherapy (CRTCT group) or SIB-RT alone (RT group). Data analysis was completed on March 22, 2022. Interventions: In both groups, the planning gross tumor volume was administered with radiation dose of 59.92 Gy and the planning target volume was administered with radiation dose of 50.4 Gy, in 28 fractions each. In the CRTCT group, concurrent S-1 was administered on radiotherapy days, and consolidated S-1 was administered at 4 to 8 weeks after SIB-RT. Main Outcomes and Measures: The primary end point was overall survival (OS) of the intent-to-treat population. Secondary end points were progression-free survival (PFS) and toxicity profile. Results: A total of 330 patients (median [IQR] age, 75.5 [72-79] years; 220 [66.7%] male patients) were included, with 146 patients randomized to the RT group and 184 randomized to the CRTCT group. A total of 107 patients (73.3%) in the RT group and 121 patients (67.9%) in the CRTCT group were clinically diagnosed with stage III to IV disease. At the time of analysis of the 330 patients in the intent-to treat-population (March 22, 2022), OS was improved in the CRTCT group compared with the RT group at 1 year (72.2% vs 62.3%) and 3 years (46.2% vs 33.9%; log-rank P = .02). PFS was similarly improved in the CRTCT group compared with the RT group at 1 year (60.8% vs 49.3%) and 3 years (37.3% vs 27.9%; log-rank P = .04). There was no significant difference in the incidence of treatment-related toxic effects higher than grade 3 between the 2 groups. Grade 5 toxic effects occurred in each group, including 1 patient who experienced myelosuppression and 4 patients with pneumonitis in the RT group and 3 patients with pneumonitis and 2 patients with fever in the CRTCT group. Conclusions and Relevance: These findings suggest that oral S-1 chemotherapy administered with SIB-RT should be considered as an alternative treatment option for patients aged 70 years and older with inoperable ESCC, since it improved survival outcomes without additional treatment-related toxic effects compared with SIB-RT alone. Trial Registration: ClinicalTrials.gov Identifier: NCT02979691.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Pneumonia , Humans , Male , Aged , Aged, 80 and over , Female , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Neoplasms/drug therapy , Quality of Life , Chemoradiotherapy/adverse effects , Pneumonia/etiology
11.
Angew Chem Int Ed Engl ; 62(5): e202214809, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36445797

ABSTRACT

Cellulose aerogels are plagued by intermolecular hydrogen bond-induced structural plasticity, otherwise rely on chemicals modification to extend service life. Here, we demonstrate a petrochemical-free strategy to fabricate superelastic cellulose aerogels by designing hierarchical structures at multi scales. Oriented channels consolidate the whole architecture. Porous walls of dehydrated cellulose derived from thermal etching not only exhibit decreased rigidity and stickiness, but also guide the microscopic deformation and mitigate localized large strain, preventing structural collapse. The aerogels show exceptional stability, including temperature-invariant elasticity, fatigue resistance (∼5 % plastic deformation after 105  cycles), high angular recovery speed (1475.4° s-1 ), outperforming most cellulose-based aerogels. This benign strategy retains the biosafety of biomass and provides an alternative filter material for health-related applications, such as face masks and air purification.

13.
Front Chem ; 10: 1026924, 2022.
Article in English | MEDLINE | ID: mdl-36353142

ABSTRACT

Pancreatic cancer (PC) is one of the deadliest gastrointestinal malignancies. Advances in molecular biology and surgery have significantly improved survival rates for other tumors in recent decades, but clinical outcomes for PC remained relatively unchanged. Chemodynamic therapy (CDT) and Photothermal therapy (PTT) represent an efficient and relatively safe cancer treatment modality. Here, we synthesized Mn-doped Prussian blue nanoparticles (MnPB NPs) through a simple and mild method, which have a high loading capacity for drugs and excellent CDT/PTT effect. Cell line experiments in vitro and animal experiments in vivo proved the safety of MnPB NPs. We stimulated the PC cells with MnPB NPs and performed transwell migration assays. The migration of PC cells was reduced company with the decrease of two classical proteins: matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9). Moreover, MnPB NPs induced ferroptosis, which mediated the MAPK pathway and achieved tumor elimination in nude mice. This effective and safe strategy controlled by irradiation represents a promising strategy for pancreatic cancer.

14.
Clin Lab ; 68(10)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36250845

ABSTRACT

BACKGROUND: Leukopenia is the most common adverse event in chemotherapy, which natural products can prevent and treat. The aim of this study was to investigate the clinical efficacy of potato extract for alleviating chemoradiotherapy-induced leukopenia in cancer patients. METHODS: This was a single-blinded randomized placebo-controlled trial that enrolled 184 cancer patients. The participants were scheduled to undergo chemoradiotherapy in two hospitals, where they were randomized to receive potato extract or a placebo in a 1:1 ratio for a period of 49 days. Change in leukocyte value was considered the primary outcome of this clinical trial. Secondary outcomes included tumor response rate, blood test, and quality of life score. RESULTS: The leukopenia was relieved in the potato extract group compared with the placebo group. Of note, a significant difference in leukopenia between the two groups was found after 14 days (p = 0.04). In addition, there was no statistically significant difference in leucocyte levels in the potato extract group (before and after potato extract treatment; p = 0.13), but in the placebo group, the leukocyte value significantly decreased compared to before treatment (p = 0.06). CONCLUSIONS: Potato extract can alleviate chemoradiotherapy-induced leukopenia in cancer patients. These results show the potential function of potato extract as a protective agent in management of cancer chemoradiotherapy.


Subject(s)
Biological Products , Leukopenia , Neoplasms , Solanum tuberosum , Chemoradiotherapy/adverse effects , Chemoradiotherapy/methods , Double-Blind Method , Humans , Leukopenia/chemically induced , Neoplasms/drug therapy , Neoplasms/radiotherapy , Quality of Life , Single-Blind Method , Treatment Outcome
15.
Front Bioeng Biotechnol ; 10: 1001994, 2022.
Article in English | MEDLINE | ID: mdl-36177184

ABSTRACT

Colorectal cancer (CRC) is one of the most common cancers of the digestive tract, and patients with advanced-stage cancer have poor survival despite the use of multidrug conventional chemotherapy regimens. Intra-tumor heterogeneity of cancerous cells is the main obstacle in the way to effective cancer treatments. Therefore, we are looking for novel approaches to eliminate just cancer cells including nanoparticles (NPs). PPy@Fe3O4 NPs were successfully synthesized through a portable method. The characterization of transmission electron microscopy (TEM), Fourier-Transformed infrared spectrometer, and X-ray powder diffraction have further proved successful preparation of PPy@Fe3O4 NPs. NIR irradiation was used to test the photothermal properties of NPs and an infrared camera was used to record their temperature. The direct effects of PPy@Fe3O4 NPs on colorectal cancer cell DLD1 were assessed using CCK8, plate clone, transwell, flow cytometry, and western blotting in CRC cell. The effect of PPy@Fe3O4 NPs on neoplasm growth in nude mice was evaluated in vivo. This study demonstrated that PPy@ Fe3O4 NPs significantly inhibit the growth, migration, and invasion and promote ferroptosis to the untreated controls in colorectal cancer cells. Mechanical exploration revealed that PPy@Fe3O4 NPs inhibit the multiplication, migration, and invasion of CRC cells in vitro by modulating the NF-κB signaling pathway. Importantly, Ferroptosis inhibitors Fer-1 can reverse the changes in metastasis-associated proteins caused by NPs treatment. Collectively, our observations revealed that PPy@Fe3O4 NPs were blockers of tumor progression and metastasis in CRC. This study brought new insights into bioactive NPs, with application potential in curing CRC or other human disorders.

16.
J Food Sci ; 87(10): 4504-4521, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36124403

ABSTRACT

The potential uses of Ligustrum robustum (Rxob.) Blume extract as a natural antioxidant to protect the quality of different oils during storage and frying process were studied. The results showed that L. robustum extract has been shown to retard the decline in the quality of both oils based on the tests of acid value, peroxide value, p-anisidine value, color, volatile flavor, and fatty acid compositions, and the protective effect of L. robustum extract on the quality of peanut oil was better than that of palm oil. By the component analysis, L. robustum extract was found to have a total phenols content of 140.75 ± 1.52 mg/g, and ligurobustoside C was identified as the main phenolic compound. The thermogravimetric and differential scanning calorimetry results showed that L. robustum extract enhanced the oxidative stability of peanut and palm oils. In addition, Fourier transform infrared results indicated that L. robustum extract had protective effects on the C=C bond and ester bond of oil molecule. Moreover, by using electron spin resonance technique, L. robustum extract showed the ability to inhibit and scavenge alkyl-free radicals in both oils. The present results suggested that L. robustum extract may protect the quality of oils during the storage and frying process by inhibiting the oxidation of unsaturated fatty acids and might be a potential natural antioxidant in the food industry. PRACTICAL APPLICATIONS: The excellent antioxidant ability of Ligustrum robustum (Rxob.) Blume extract on the oxidation of different oils and its low price indicated that it could be used as a new low-cost natural antioxidant in oil processing.


Subject(s)
Ligustrum , Ligustrum/chemistry , Palm Oil , Antioxidants/chemistry , Arachis , Peanut Oil , Phenols/chemistry , Plant Extracts/chemistry , Fatty Acids/analysis , Peroxides/analysis , Fatty Acids, Unsaturated , Esters
17.
Front Immunol ; 13: 898925, 2022.
Article in English | MEDLINE | ID: mdl-35865532

ABSTRACT

Molecular classification based on transcriptional characteristics is often used to study tumor heterogeneity. Human cancer has different cell populations with distinct transcription in tumors, and their heterogeneity is the focus of tumor therapy. Our purpose was to explore the tumor heterogeneity of uveal melanoma (UM) through RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq). Based on the consensus clustering assays of the prognosis-related immune gene set, the immune subtype (IS) of UM and its corresponding immune characteristics were comprehensively analyzed. The heterogeneous cell groups and corresponding marker genes of UM were identified from GSE138433 using scRNA-seq analysis. Pseudotime trajectory analysis and SCENIC analysis were conducted to explore the trajectory of cell differentiation and the regulatory network of single-cell transcription factors (TFs). Based on 37 immune gene sets, UM was divided into two different immune subtypes (IS1 and IS2). The two kinds of ISs have different characteristics in prognosis, immune-related molecules, immune score, and immune cell infiltration. According to 11,988 cells of scRNA-seq data from six UM samples, 11 cell clusters and 10 cell types were identified. The subsets of C1, C4, C5, C8, and C9 were related to the prognosis of UM, and different TF-target gene regulatory networks were involved. These five cell subsets differentiated into 3 different states. Our results provided valuable information about the heterogeneity of UM tumors and the expression patterns of TFs in different cell types.


Subject(s)
Melanoma , Uveal Neoplasms , Gene Regulatory Networks , Humans , Melanoma/pathology , Sequence Analysis, RNA/methods , Uveal Neoplasms/genetics , Uveal Neoplasms/metabolism , Uveal Neoplasms/pathology
18.
Front Endocrinol (Lausanne) ; 13: 861070, 2022.
Article in English | MEDLINE | ID: mdl-35651976

ABSTRACT

Partially cystic thyroid nodules (PCTNs) are a kind of thyroid nodule with both solid and cystic components, and are usually misdiagnosed as benign nodules. The objective of this study was to determine the ultrasound (US) characterizations with a TIRADS Grade-4a or higher partially cystic thyroid nodules (PCTNs) which are associated with being malignant or benign. In this study, 133 PCTNs with a TIRADS Grade-4a or higher were enrolled; 83 were malignant and 50 were benign. TI-RADS classification can detect malignant PCTNs, and its sensitivity, specificity, positive predictive value, negative predictive value, and accuracy are 39.8%, 96.0%, 94.3%, 49.0%, and 60.9%, respectively. Univariate analyses revealed that nodule shape, margin, and structure were related to PCTNs' being benign and malignant, among which nodules taller-than-wide, with an irregular shape, non-smooth margin, eccentric sharp angle, or edge sharp angle were significantly associated with malignancy while ovoid to round nodules, smooth margins, multiple separation, and eccentric obtuse angle structures were significantly associated with a benign nature. For the solid part of PCTNs, its free margin, echo, and calcification are related to benign and malignant PCTNs. Among them, the free margin of the solid part is non-smooth, hypoechoic, and microcalcification, which are related to malignant PCTNs, while the free margin of the solid part is smooth, isoechoic, macrocalcification, non-calcification and are related to benign PCTNs. Calcification of solid part and free margin are important factors for predicting malignant PCTNs. In addition, nodules' composition, blood flow signal, and other factors had nothing to do with PCTNs' being benign or malignant. In the multivariate Logistic regression analysis, solid part calcification (OR: 17.28; 95%CI: 5.14~58.08) and free margin (OR: 3.18; 95%CI: 1.01~10.00) were revealed to be the strongest independent predictors for malignancy (P<0.05). Our study indicated that understanding the ultrasound characteristics of malignant PCTNs, to avoid misdiagnosed PCTNs patients, is important to make a precise diagnosis and prognosis of PCTNs.


Subject(s)
Calcinosis , Thyroid Nodule , Calcinosis/diagnostic imaging , Diagnosis, Differential , Humans , Predictive Value of Tests , Thyroid Nodule/diagnostic imaging , Thyroid Nodule/pathology , Ultrasonography
19.
Int J Food Sci Nutr ; 73(6): 786-799, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35603582

ABSTRACT

The effect of tea polyphenols (TPs) on noodles quality was investigated, and the interaction mechanism between catechins and gliadins was explored. With TPs addition, noodles showed the significant changes in physicochemical and sensory properties. The water absorption, tensile strength and elasticity increased by 1.35%, 4.98%, 28.51% with 0.5% of TPs, and then decreased with the increasing of TPs. According to the determinations of surface hydrophobicity, spatial structure, thermal properties, amidogen and sulfhydryl content, the structure and properties of gliadin were affected by catechins. Esterified catechins tended to disrupt gliadin structures and non-esterified catechins polymerised gliadin molecules. Furthermore, molecular docking results indicated that catechins interacted with gliadin mainly by hydrogen bonds and hydrophobic action. The reactivity of catechins with gliadin was in the sequence as: epigallocatechin gallate > epicatechin gallate > epigallocatechin > epicatechin, which was based on the account of gallate and B-ring hydroxyl number discrepancy. All results suggested that catechins affected greatly on gliadin, and TPs were potentially used to improve the quality of flour products.


Subject(s)
Catechin , Polyphenols , Catechin/chemistry , Gliadin , Hydrogen Bonding , Molecular Docking Simulation , Polyphenols/pharmacology , Tea/chemistry
20.
J Food Sci ; 87(4): 1500-1513, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35279847

ABSTRACT

Effect of tea polyphenols (TP) on the quality of Chinese steamed bun (CSB) was investigated, while the interaction and action mechanism between TP and vital wheat gluten (VWG, constitutive proteins of flour) were further explored. With a low concentration (1%) of TP, CSB showed positive changes in quality, and the hardness of CSB decreased by 33.95%, while its specific volume, springiness, and resilience separately increased by 1.8%, 11.9%, and 5.5%, whereas the higher concentrations of TP (2% and 4%) caused an adverse impact. By observation of scanning electron microscope, VWG formed a fluffier structure with a low concentration of TP, while the structure deteriorated at high concentration of TP. In addition, the secondary and tertiary structures of VWG were both changed by TP. Along with the results of thermodynamic analysis (thermogravimetric and differential scanning calorimetry measurements), TP could induce the structural rearrangement of VWG. Further, a lower amidogen and sulfhydryl contents of VWG were obtained in TP groups, which illustrated that peptide and disulfide bonds of VWG were not possibly interrupted by TP. Instead, hydrophobic residues of VWG were bonded to form a more hydrophilic structure. Moreover, according to molecular docking results, epigallocatechin-3-gallate interacted tightly with VWG by hydrogen bonds and hydrophobic actions, and the action sites were mainly at hydrophobic and hydrophilic residues. All results suggested that the VWG structure was affected greatly by TP, and a low dose of TP might be potential to improve the quality of flour products. PRACTICAL APPLICATION: The physicochemical properties of gluten show the significant effects on the quality of flour products in food industry. In the present study, a low dose of tea polyphenols exhibited a strengthened effect on gluten, so as to ameliorate the texture of Chinese steamed bun (CSB) due to their tight interactions with gluten, while the color of CSB was changed to brown as tea polyphenols. All results suggested that a low dose of tea polyphenols could be potentially utilized to improve flour quality and enhance gluten strength in food industry.


Subject(s)
Glutens , Polyphenols , China , Glutens/chemistry , Molecular Docking Simulation , Polyphenols/chemistry , Steam , Tea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...