Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 658
Filter
1.
Plant Dis ; 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39306684

ABSTRACT

Patchouli (Pogostemon cablin (Blanco) Benth) is an important medicinal and aromatic plant widely cultivated in China, India, and other Southeast Asian countries. It is renowned for its diverse applications in traditional medicine and its detoxification, antibacterial, anti-inflammatory, and other pharmacological properties (Wu et al. 2016; Fang et al. 2022). In May 2023, a severe leaf spot disease was observed on Pogostemon cablin plants grown in most plantations in Yulin, Guangxi, China (22°26'N; 109°83'E), with over 50% incidence rate. Symptoms began as small, circular, brown spots on leaves, enlarging with yellow halos. Lesions expanded into irregular shapes with necrotic centers. Advanced stages showed extensive yellowing, browning, and leaf senescence. A total of 20 symptomatic plants were sampled from 5 different locations within the detected area, with 4 plants sampled per location. To isolate the pathogen, 20 affected leaves were collected from these plants and preliminarily washed with sterile distilled water (SDW). Five small tissue pieces (5×5 mm) were excised from the lesion edge of each leaf, surface-disinfected with 75% ethanol and 1% NaClO, rinsed thrice with SDW, and placed on potato dextrose agar (PDA) at 28 °C in darkness for 7 days. Out of these, 18 plants (90%) yield fungal isolate with recurrent and similar morphological characteristics. Four representative isolates (X5-1-1, X5-1-3, X5-1-5, and X5-1-7) were selected for further analysis. On PDA, colonies were initially white, gradually turning black on the surface, with light yellow on the reverse side of the plate. Conidia were brown to black, globose, rough-walled, and 2.6 to 5.2 µm in diameter. Conidial heads were brown-black, and conidiophores were smooth and hyaline. Morphological characteristics matched those of Aspergillus sp. (Guo et al. 2017). For molecular identification, the internal transcribed spacer (ITS) region and the ß-tubulin (TUB) gene of all four isolates were sequenced (Lim et al. 2019). All four isolates (X5-1-1, X5-1-3, X5-1-5, and X5-1-7) showed consistent morphological characteristics and 100% identical ITS and TUB sequences. Representative sequences from isolate X5-1-5 were submitted to GenBank (ITS: PP789632; TUB: PP798205). The obtained ITS and TUB sequences showed 99% similarity to Aspergillus tubingensis (ITS: OP737633; TUB: MG991377). Based on morphological and molecular analyses, the fungus was identified as A. tubingensis (Palmer et al. 2019). For pathogenicity tests, a spore suspension (1 × 10^6 conidia/mL) was prepared from 7-day-old cultures of A. tubingensis grown on PDA. The suspension was sprayed onto leaves of 10 healthy Pogostemon cablin plants until runoff. Control plants were sprayed with SDW. All plants were kept in a controlled greenhouse (12/12h light/dark, 25 ± 2 °C, 90% humidity). After 7 d, symptoms identical to those observed in the field developed on all pathogen inoculated plants, while control plants remained asymptomatic. The fungus was successfully re-isolated from infected leaves in three successive trials, fulfilling Koch's postulates. Notably, A. tubingensis has previously been reported causing field diseases on strawberry in California, Jatropha curcas and Helleborus species in China (Palmer et al. 2019; Guo et al. 2017, Liaquat et al. 2019), and vine canker on table grape in Italy (Vitale et al. 2012). To our knowledge, this is the first report of A. tubingensis causing leaf spot on Pogostemon cablin in China. This finding provides a foundation for further investigate into the biology, epidemiology, and management of this disease.

2.
J Agric Food Chem ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39297229

ABSTRACT

Flutriafol, a globally utilized triazole fungicide in agriculture, is typically applied as a racemic mixture, but its enantiomers differ in bioactivity and environmental impact. The synthesis of flutriafol enantiomers is critically dependent on chiral precursors: 2,2-bisaryl-substituted oxirane [(2-fluorophenyl)-2-(4-fluorophenyl)oxirane, 1a] and 1,2-diol [1-(2-fluorophenyl)-1-(4-fluorophenyl)ethane-1,2-diol, 1b]. Here, we engineered a Rhodotorula paludigensis epoxide hydrolase (RpEH), obtaining mutant Escherichia coli/RpehH336W/L360F with a 6.4-fold enhanced enantiomeric ratio (E) from 5.5 to 35.4. This enabled a gram-scale resolution of rac-1a by E. coli/RpehH336W/L360F, producing (S)-1a (98.2% ees) and (R)-1b (75.0% eep) with 44.3 and 55.7% analytical yields, respectively. As follows, chiral (S)-flutriafol (98.2% ee) and (R)-flutriafol (75.0% ee) were easily synthesized by a one-step chemocatalytic process from (S)-1a and a two-step chemocatalytic process from (R)-1b, respectively. This chemoenzymatic approach offers a superior alternative for the asymmetric synthesis of flutriafol enantiomers. Furthermore, molecular dynamics simulations revealed insight into the enantioselectivity improvement of RpEH toward bulky 2,2-bisaryl-substituted oxirane 1a.

3.
Front Psychiatry ; 15: 1446727, 2024.
Article in English | MEDLINE | ID: mdl-39234618

ABSTRACT

Objective: This study aimed to explore the impact of the COVID-19 pandemic on non-suicidal self-injury (NSSI) among youth students, and the mediating role of psychological factors in the relationship between the COVID-19 pandemic and NSSI. Method: An online survey was conducted at junior and senior high schools, as well as universities located in Jingzhou, Hubei Province, China between June 2021 and January 2022. The COVID-19 Impact Index was constructed using multiple correspondence analysis (MCA) method. The bootstrapping method was used for mediation analysis. Results: A total of 16025 youth participated in the study and 12507 youth (78.1%) finished the questionnaires. The COVID-19 Impact Index had a significantly positive effect on NSSI (r=0.16, p<0.001). The mediation analysis results showed that the COVID-19 Impact Index had a significant indirect effect on youth' NSSI (ß=0.0918, 95% CI [0.0788, 0.1048]), and this indirect effect was mainly achieved through affecting youth' anxiety, depression and post-traumatic stress disorder (PTSD). The mediation effect of anxiety on NSSI was 0.0584, the direct effect was 0.0334, and the mediation proportion was 63.6%. The mediation effect of depression on NSSI was 0.0668, the direct effect was 0.0250, and the mediation proportion was 72.8%. The mediation effect of PTSD on NSSI was 0.0640, the direct effect was 0.0278, and the mediation proportion was 69.7%. All the mediation effects, direct effects and total effects were statistically significant (p<0.001). Conclusion: The higher the impact of the COVID-19 Impact Index, the higher the prevalence of NSSI among youth students. Anxiety, depression and PTSD had mediated the relationship between the COVID-19 Impact Index and NSSI. It is suggested that specific health policies, mental health services and interventions should be developed to reduce the NSSI and improve mental health status among youth students during the COVID-19 pandemic.

4.
Nat Commun ; 15(1): 7652, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227563

ABSTRACT

P2X receptors, a subfamily of ligand-gated ion channels activated by extracellular ATP, are implicated in various physiopathological processes, including inflammation, pain perception, and immune and respiratory regulations. Structural determinations using crystallography and cryo-EM have revealed that the extracellular three-dimensional architectures of different P2X subtypes across various species are remarkably identical, greatly advancing our understanding of P2X activation mechanisms. However, structural studies yield paradoxical architectures of the intracellular domain (ICD) of different subtypes (e.g., P2X3 and P2X7) at the apo state, and the role of the ICD in P2X functional regulation remains unclear. Here, we propose that the P2X3 receptor's ICD has an apo state conformation similar to the open state but with a less tense architecture, containing allosteric sites that influence P2X3's physiological and pathological roles. Using covalent occupancy, engineered disulfide bonds and voltage-clamp fluorometry, we suggested that the ICD can undergo coordinated motions with the transmembrane domain of P2X3, thereby facilitating channel activation. Additionally, we identified a novel P2X3 enhancer, PSFL77, and uncovered its potential allosteric site located in the 1α3ß domain of the ICD. PSFL77 modulated pain perception in P2rx3+/+, but not in P2rx3-/-, mice, indicating that the 1α3ß, a "tunable" region implicated in the regulation of P2X3 functions. Thus, when P2X3 is in its apo state, its ICD architecture is fairly ordered rather than an unstructured outward folding, enabling allosteric modulation of the signaling of P2X3 receptors.


Subject(s)
Allosteric Site , Protein Domains , Receptors, Purinergic P2X3 , Animals , Receptors, Purinergic P2X3/metabolism , Receptors, Purinergic P2X3/chemistry , Receptors, Purinergic P2X3/genetics , Humans , Mice , HEK293 Cells , Adenosine Triphosphate/metabolism , Male , Mice, Inbred C57BL , Allosteric Regulation
5.
J Med Case Rep ; 18(1): 429, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39238050

ABSTRACT

BACKGROUND: Dentatorubral-pallidoluysian atrophy is a rare autosomal dominant neurodegenerative disease. It is a rare disease in the world. Therefore, sharing clinical encounters of this case can deepen global awareness and understanding of the disease. CASE PRESENTATION: The patient was a 34-year-old male of Han nationality who was unmarried. The patient was admitted owing to weakness of the left lower limb with walking instability for 2 months and aggravation for 1 month. There was no dizziness, headache, numbness of limbs, convulsions, nausea, vomiting, abdominal pain, ataxia, nausea, vomiting, or abdominal pain. No nausea, vomiting, diarrhea, abdominal distension, tinnitus, hearing loss, fever, cough, expectoration. Personal history: worked in Cambodia 5 years ago, worked in Dubai 3 years ago, engaged in computer work, smoking or drinking habits. The patient was unmarried. Family history: the mother had symptoms similar to walking unsteadily (undiagnosed). Positive signs include a wide-base gait with a rotatory nystagmus that jumps upward in both eyes. Bilateral finger-nose instability test was quasi-positive, rapid alternating test was negative, and eye closure tolerance test was positive. Tendon reflexes were active in both upper limbs and hyperreflexia in both lower limbs. Stability of the heel, knee, and tibia. Genetic testing showed that the number of repeats in the dentatorubral-pallidoluysian atrophy ATN1 gene was 18 and 62, and the (CAG)n repeat sequence in the ATN1 gene was abnormal, with a repeat number of 62, and the patient was a pathogenic variant. The patient was diagnosed with dentatorubral-pallidoluysian atrophy. Dentatorubral-pallidoluysian atrophy remains a progressive neurodegenerative disease with no effective treatment. At present, the proband is taking 5 mg of buspirone three times a day, which has been reported to improve the symptoms. The patient was followed up for 6 months after taking buspirone, and there was no significant improvement in the temporary symptoms. At present, there are few cases of dentatorubral-pallidoluysian atrophy, and the characteristics of nystagmus in this disease have not been proposed in the past. This case reported the unusual presentation of nystagmus. CONCLUSION: Dentatorubral-pallidoluygur atrophy is a rare neurodegenerative disease with autosomal dominant inheritance. To the best of our knowledge, our present case report is the first case report of dentatorubral-pallidoluygur atrophy with specific nystagmus. We describe the special eye shake and its positive signs to increase dentatorubral-pallidoluysian atrophy clinical positive signs.


Subject(s)
Myoclonic Epilepsies, Progressive , Humans , Male , Adult , Myoclonic Epilepsies, Progressive/genetics , Myoclonic Epilepsies, Progressive/physiopathology , Nerve Tissue Proteins/genetics
6.
Plant Dis ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39146003

ABSTRACT

Millettia speciosa Champ, renowned for its diverse applications in traditional medicine, is extensively cultivated in the Guangxi region of China, spanning roughly 5,973 hectares. In July 2021, a plantation in Yulin, Guangxi, China (22°64'N; 110°29'E), exhibited severe leaf spot disease on M. speciosa. Notably, a 46,690 square meters area had over 40% leaf spot incidence. Initially, symptoms appeared as small, circular, pale-yellow lesions on the leaves, then turned into irregular, dark brown spots with yellow halos, leading to the wilt and defoliation of leaves. To identify the responsible pathogen, a total of five symptomatic leaves were collected and sterilized systematically. Small tissue segments (5×5 mm) from lesion peripheries were aseptically excised, then surface sterilized with 75% ethanol for 10 s, and 1% sodium hypochlorite (NaClO) for 3 min. Following this, the sterilized tissues were triple-rinsed with sterile water and cultured on potato dextrose agar (PDA) at 28 °C in the dark for 7 d. A total of seven isolates were obtained through single-spore isolation, and one representative isolate, N2-3, was selected for further analysis. After 7 d of incubation, colonies displayed flat, white, and extensively branched aerial hyphae. Over time, the reverse side of the colony changed from white to yellowish-white. The pycnidia were black with conidial droplets ranging from cream to pale yellow exuding from their ostioles. The α-conidia were one-celled, hyaline, ovoid to cylindrical, typically with one or two droplets, 2.6 to 5.9 ×1.4 to 3.9 µm (n=50). These morphological traits align with those of the genus Diaporthe, as reported by Li et al. (2022) and Crous et al. (2015). To identify the species, isolate N2-3 underwent sequencing of the internal transcribed spacer (ITS), ß-tubulin (BT), and translation elongation factor 1 alpha (EF1-α) sections (Huang et al. 2021). Obtained sequences of ITS, BT and EF1-α (Genebank accessions nos. OR600532, OR662169 and OR662168) displayed a 99% similarity to Diaporthe tulliensis (Genebank accessions nos. OP219651, ON932382, OL412437, respectively). Based on the concatenated ITS, BT and EF1-α, a neighbor-joining phylogenetic analyses using MEGA7.0 clustered with D. tulliensis. Therefore, the fungus was identified as D. tulliensis (teleomorph name) based on morphological and molecular features. A pathogenicity test was conducted on 1-year-old M. speciosa seedlings by gently abrading healthy leaves with sterilized toothpicks to create superficial wounds. Wounded leaves were then inoculated with 5 mm diameter mycelial plugs, while control seedlings received PDA plugs. Three leaves per plant and five plants per treatment were selected for assessment. All seedlings were kept in a controlled greenhouse (12/12h light/dark, 25 ± 2 °C, 90% humidity). After 7 d, the inoculated leaves showed symptoms like those in the field, while control plants remained healthy. The fungus was consistently reisolated from the infected leaves, satisfying Koch's postulates. Notably, D. tulliensis has caused Boston ivy leaf spot, bodhi tree leaf spot, cacao pod rot, and jasmine stem canker (Huang et al. 2021; Li et al. 2022; Serrato-Diaz et al. 2022; Hsu et al. 2023). This discovery is significant as it marks the first report of Diaporthe tulliensis causing leaf spot on Millettia speciossa in China, which has direct implications for the development of diagnostic tools and research into potential disease management strategies.

7.
Sci Rep ; 14(1): 18621, 2024 08 10.
Article in English | MEDLINE | ID: mdl-39127793

ABSTRACT

Star anise (Illicium verum), a valuable spice tree, faces significant threats from fungal diseases, particularly Alternaria leaf spot. This study investigates the potential of a soil-derived actinomycete strain, YG-5, as a biocontrol agent against Alternaria tenuissima, the causative pathogen on Alternaria leaf spot in star anise. Through comprehensive morphology, physiology, biochemistry, and genetic analyses, we identified the isolate as Streptomyces sp. YG-5. The strain exhibited broad-spectrum antimicrobial activity against several plant pathogens, with inhibition rates ranging between 36.47 to 80.34%. We systematically optimized the fermentation conditions for YG-5, including medium composition and cultivation parameters. The optimized process resulted in an 89.56% inhibition rate against A. tenuissima, a 14.72% improvement over non-optimized conditions. Notably, the antimicrobial compounds produced by YG-5 demonstrated stability across various temperatures, pH levels, and UV irradiation. In vivo efficacy trials showed promising results, with YG-5 fermentation broth reducing Alternaria leaf spot incidence on star anise leaves by 56.95%. These findings suggest that Streptomyces sp. YG-5 holds significant potential as a biocontrol agent against Alternaria leaf spot in star anise cultivation, offering a sustainable approach to disease management in this valuable crop.


Subject(s)
Alternaria , Fermentation , Plant Diseases , Streptomyces , Alternaria/physiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Streptomyces/physiology , Plant Leaves/microbiology , Biological Control Agents , Actinobacteria/genetics
8.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3736-3748, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39099348

ABSTRACT

To explore the mutagenic effect of the space environment on Pueraria montana and select the elite germplasm with good growth conditions and high isoflavone content, this study observed the agronomic traits, determined the flower isoflavone content, and labeled amplified fragment length polymorphism(AFLP) fluorescent molecular markers of 79 P. montana plants exposed to space mutagenesis(SP1 group) and 10 control plants of P. montana(CK group). Excel 2019, SPSS 25.0, NTSYSpc-2.11F, and Popgen 32 were employed to analyze the genetic diversity and perform the cluster analysis. The results showed that the SP1 group presented changed leaf hairy attitude and flower structure and higher CV and H' of quantitative traits than the CK group. The cluster analysis screened out five plants in the SP1 group. Ten P. montana plants in the SP1 group had higher content of 6″-O-xylosyl-tectoridin and tectoridin in the flowers than the control group, with the total content of both exceeding 11%. After clustering, 9 plants in the SP1 group were separated. Nine pairs of polymorphic primers were screened out frrom 64 pairs of primers. A total of 1 620 polymorphic loci were detected, with the average percentage of polymorphic loci(PPL) of 83.33%. The average Nei's gene diversity index(H) and Shannon's information index(I) were 0.192 2 and 0.305 2, respectively. After clustering, 4 plants in the SP1 group were screened out. According to the above results, plants No. 30, No. 66, and No. 89 in the SP1 group were subjected to greater mutagenic effect by the space environment and presented better growth and higher flower isoflavone content. Moreover, plant No. 30 showed the flower structure variation and flower weight two times of that in the CK group. These plants can be used as key materials for the subsequent experiments.


Subject(s)
Flowers , Genetic Variation , Pueraria , Pueraria/genetics , Pueraria/chemistry , Pueraria/growth & development , Flowers/genetics , Flowers/growth & development , Flowers/chemistry , Isoflavones , Mutagenesis , Amplified Fragment Length Polymorphism Analysis
9.
Chem Biol Interact ; 401: 111188, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39121897

ABSTRACT

The random flap is one of the commonly used techniques for tissue defect repair in surgery and orthopaedics, however the risk of ischaemic necrosis at the distal end of the flap limits its size and clinical application. Metformin (Met) is a first-line medication in the treatment of type 2 diabetes, with additional effects such as anti-tumor, anti-aging, and neuroprotective properties. In this study, we aimed to investigate the biological effects and potential mechanisms of Met in improving the survival of random skin flaps. Twenty-four male Sprague-Dawley rats and 12 male C57BL/6J mice underwent McFarlane flap surgery and divided into control (Ctrl) and Met groups (100 mg/kg). The survival rate of the flap were evaluated on day 7. Angiography, Laser doppler blood flow imaging, and H&E staining were used to assess blood flow supply and the levels of microvascular density. Then, reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were measured by test kits. Immunohistochemistry analysis was conducted to evaluate the expression of Vascular Endothelial Growth Factor A (VEGFA), Vascular endothelial cadherin (VE-cadherin) and CD31. Rats and mice in the Met group exhibited higher flap survival rate, microcirculatory flow, and higher expression levels of VEGFA and VE-cadherin compared with the Ctrl group. In addition, the level of oxidative stress was significantly lower in the met group. And then we demonstrated that the human umbilical vein endothelial cells (HUVECs) treated with Met can alleviate tert-butyl hydroperoxide (TBHP)-stimulated cellular dysfunction and oxidative stress injury. Mechanistically, Met markedly stimulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), and promoted Nrf2 nuclear translocation. Silencing of Nrf2 partially abolished the antioxidant and therapeutic effects of Met. In summary, our data have confirmed that Met has a positive effect on flap survival and reduces necrosis. The mechanism of action involves the regulation of the Nrf2/HO-1 signaling pathway to combat oxidative stress and reduce damage.


Subject(s)
Metformin , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Rats, Sprague-Dawley , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Metformin/pharmacology , Male , Signal Transduction/drug effects , Rats , Mice , Humans , Surgical Flaps/pathology , Skin/drug effects , Skin/metabolism , Vascular Endothelial Growth Factor A/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Heme Oxygenase-1/metabolism , Malondialdehyde/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Superoxide Dismutase/metabolism
10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(4): 1039-1045, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39192395

ABSTRACT

OBJECTIVE: To explore the overall survival and prognostic factors of patients over 50 years old with acute myeloid leukemia (AML). METHODS: The clinical data of 222 AML patients aged over 50 years in our hospital from January 2016 and June 2021 were retrospectively analyzed. Kaplan-Meier method was used to evaluate the overall survival (OS) rate, and Cox regression model to evaluate the prognostic factors. RESULTS: The 1-year and 3-year OS rates of all patients were 46.8% and 28.8%, respectively. The recurrence rate of patients who achieved remission during follow-up time was 57%. Both univariate and multivariate analysis showed that advanced age, MLL family fusion gene, PHF6 gene mutation, TP53 gene mutation, intolerance to standard chemotherapy, incomplete remission, complex karyotype, +mar karyotype and inv(3) karyotype were significantly correlated with prognosis (all P <0.05). Negative fusion gene and positive AML- ETO fusion gene had no obvious survival advantage in this population. In patients with complete remission, there was no significant survival advantage in those who achieved minimal residual disease negative. CONCLUSION: AML patients aged over 50 years have a poor outcome and high recurrence rate. The prognosis is affected by multiple factors and has its own characteristics.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/genetics , Middle Aged , Retrospective Studies , Prognosis , Survival Rate , Mutation , Female , Aged , Male , Remission Induction
11.
Sci Rep ; 14(1): 18496, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122935

ABSTRACT

The acoustic black hole (ABH) structure exhibits remarkable energy focalization above a given cut-on frequency, offering potential for broadband vibration suppression in structures. However, its energy focusing properties diminish significantly below this cut-on frequency. Therefore, it is crucial to enhance the vibration attenuation capabilities of ABH structures within the low frequency range. This study presents a numerical investigation into the impact of thin-walled structures with embedded ABHs and distributed dynamic vibration absorbers (DVAs) on low frequency broadband vibration reduction. Initially, the focusing characteristics of the ABH thin-walled structure is analyzed, aiding in the attached position of DVAs. Furthermore, the influence of the design parameters and attached position of DVA on the broadband damping effect of the structure is explored. The findings indicate that DVAs designed for low frequencies can achieve significant vibration attenuation across the entire frequency spectrum, including low frequencies, when installed at specific focusing positions. When compared to the position with the maximum vibration response, while the attenuation of the low frequency common amplitude value is slightly reduced, greater vibration attenuation across the entire frequency band is achieved. This research offers valuable insights into optimizing the integration of DVAs with ABHs in thin-walled structures for enhanced broadband vibration attenuation.

12.
Talanta ; 280: 126698, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39142130

ABSTRACT

Various isothermal amplification methods have been developed for point-of-care testing (POCT) of various infectious diseases. Here, we proposed a novel isothermal amplification method, named as 5'-half complementary primers mediated isothermal amplification (HCPA). Because of the similarity of our method to the previous method competitive annealing mediated isothermal amplification (CAMP) in primer design, we also use the name CAMP for our method. We demonstrated that CAMP is mediated by both a linear isothermal amplification pattern and a loop-mediated isothermal amplification pattern. To improve the specificity and enable multiplex detection, we further developed HiFi-CAMP method that uses a small amount of high-fidelity DNA polymerase to cut HFman probe to release fluorescent signal. The HiFi-CAMP method was demonstrated to have a good specificity and sensitivity, and fast amplification speed in detection of three human respiratory viruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respiratory syncytial virus A (RSV-A) and influenza A viruses (IAV). When compared with gold standard RT-qPCR assays, the HiFi-CAMP assays showed sensitivities of 90.0 %, 71.4 % and 78.1 %, specificities of 100 %, 100 % and 95.5 %, and consistencies of 93.0 %, 93.3 % and 88.2 % for SARS-CoV-2, RSV-A and IAV, respectively. Furthermore, a duplex HiFi-CAMP assay was also developed to simultaneously detect RSV-A and SARS-CoV-2. The HiFi-CAMP will provide a promising candidate for POCT diagnosis in resource-limited settings.


Subject(s)
DNA-Directed DNA Polymerase , Nucleic Acid Amplification Techniques , SARS-CoV-2 , Nucleic Acid Amplification Techniques/methods , Humans , DNA-Directed DNA Polymerase/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Influenza A virus/enzymology , Influenza A virus/genetics , Influenza A virus/isolation & purification , Respiratory Syncytial Viruses/genetics , DNA Primers , Molecular Diagnostic Techniques
13.
Neuroscience ; 557: 89-99, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39127342

ABSTRACT

Chronic stress leads to social avoidance and anhedonia in susceptible individuals, a phenomenon that has been observed in both human and animal models. Nevertheless, the underlying molecular mechanisms underpinning stress susceptibility and resilience remain largely unclear. There is growing evidence that epigenetic histone deacetylase (HDAC) mediated histone acetylation is involved in the modulation of depressive-related behaviors. We hypothesized that histone deacetylase 5 (HDAC5), which is associated with stress-related behaviors and antidepressant response, may play a vital role in the susceptibility to chronic stress. In the current study, we detected the levels of HDAC5 and acetylation of histone 4 (H4) in the hippocampus subsequent to chronic social defeat stress (CSDS) in C57BL/6J mice. We found that CSDS induces a notable increase in HDAC5 expression, concomitant with a reduction in the acetylation of histone H4 at lysine 12 (H4K12) in the hippocampus of susceptible mice. Meanwhile, intrahippocampal infusion of HDAC5 shRNA or HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) both reversed the depression susceptibility in susceptible mice that subjected to CSDS. Furthermore, HDAC5 overexpression was sufficient to induce depression susceptibility following microdefeat stress, accompanied by a significant reduction in H4K12 level within the hippocampus of mice. Additionally, the Morris water maze (MWM) results indicated that neither CSDS nor HDAC5 exerted significant effects on spatial memory function in mice. Taken together, these investigations indicated that HDAC5-modulated histone acetylation is implicated in regulating the depression susceptibility, and may be serve as potential preventive targets for susceptible individuals.


Subject(s)
Hippocampus , Histone Deacetylases , Histones , Mice, Inbred C57BL , Social Defeat , Stress, Psychological , Animals , Stress, Psychological/metabolism , Hippocampus/metabolism , Acetylation , Histones/metabolism , Histone Deacetylases/metabolism , Male , Depression/metabolism , Histone Deacetylase Inhibitors/pharmacology , Mice , Vorinostat/pharmacology , Disease Susceptibility/metabolism , Disease Models, Animal
14.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3212-3219, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041082

ABSTRACT

In this experiment, the micro-precipitation method was used to prepare self-assembled nanoparticles of Herpetospermum caudigerum Wall.(MP-SAN). The process was optimized using average particle size and polydispersity index(PDI)as evaluation indexes. The mean particle size, PDI,zeta potential, and microstructure of MP-SAN were characterized. The intestinal absorption mechanism of dehydrodiconiferyl alcohol(DA)and herpetrione(Her)in MP-SAN was investigated through single-pass intestinal perfusion in rats. The optimized process parameters for producing MP-SAN were a stirring speed of 800 r·min~(-1),stirring time of 5 min, and rotary evaporation temperature of 40℃. The resulting MP-SAN exhibited a spherical-like structure and uniform morphology, with a mean particle size of(267.63±13.27) nm, a PDI of 0.062 0±0.043 9,and a zeta potential of(-46.18±3.66) mV. The absorption rate constant(K_a)and apparent permeability coefficient(P_(app))of DA in the ileal segment were significantly higher than those in the jejunal segment(P<0.05). However, there was no significant difference in the absorption of Her between the ileal and jejunal segments. Intestinal absorption parameters of DA and Her tended to increase with increasing drug concentration. Specifically, the K_a and P_(app) of DA in MP-SAN in the high-concentration group were significantly higher than those in the low-concentration group(P<0.01). The addition of verapamil, a P-glycoprotein inhibitor, did not significantly affect the intestinal absorption of DA and Her. However, the absorption of both DA and Her in MP-SAN was significantly increased by the addition of indomethacin(P<0.05),suggesting that DA and Her may be substrates for multidrug resistance-associated protein 2.


Subject(s)
Intestinal Absorption , Nanoparticles , Particle Size , Animals , Nanoparticles/chemistry , Rats , Male , Rats, Sprague-Dawley , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Cucurbitaceae/chemistry
15.
Genes (Basel) ; 15(7)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39062719

ABSTRACT

Styrax japonicus is a medicinal and ornamental shrub belonging to the Styracaceae family. To explore the diversity and characteristics of the chloroplast genome of S. japonicus, we conducted sequencing and comparison of the chloroplast genomes of four naturally distributed S. japonicus. The results demonstrated that the four chloroplast genomes (157,914-157,962 bp) exhibited a typical quadripartite structure consisting of a large single copy (LSC) region, a small single copy (SSC) region, and a pair of reverse repeats (IRa and IRb), and the structure was highly conserved. DNA polymorphism analysis revealed that three coding genes (infA, psbK, and rpl33) and five intergene regions (petA-psbJ, trnC-petN, trnD-trnY, trnE-trnT, and trnY-trnE) were identified as mutation hotspots. These genetic fragments have the potential to be utilized as DNA barcodes for future identification purposes. When comparing the boundary genes, a small contraction was observed in the IR region of four S. japonicus. Selection pressure analysis indicated positive selection for ycf1 and ndhD. These findings collectively suggest the adaptive evolution of S. japonicus. The phylogenetic structure revealed conflicting relationships among several S. japonicus, indicating divergent evolutionary paths within this species. Our study concludes by uncovering the genetic traits of the chloroplast genome in the differentiation of S. japonicus variety, offering fresh perspectives on the evolutionary lineage of this species.


Subject(s)
Evolution, Molecular , Genome, Chloroplast , Phylogeny , Chloroplasts/genetics , Acanthaceae/genetics , Polymorphism, Genetic
16.
Environ Geochem Health ; 46(7): 234, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849608

ABSTRACT

The disturbance of ecological stability may take place in tropical regions due to the elevated biomass density resulting from heavy metal and other contaminant pollution. In this study, 62 valid soil samples were collected from Sanya. Source analysis of heavy metals in the area was carried out using absolute principal component-multiple linear regression receptor modelling (APCS-MLR); the comprehensive ecological risk of the study area was assessed based on pollution sources; the Monte-Carlo model was used to accurately predict the health risk of pollution sources in the study area. The results showed that: The average contents of soil heavy metals Cu, Ni and Cd in Sanya were 5.53, 6.56 and 11.66 times higher than the background values of heavy metals. The results of soil geo-accumulation index (Igeo) showed that Cr, Mo, Mn and Zn were unpolluted to moderately polluted, Cu and Ni were moderately polluted, and Cd was moderately polluted to strongly polluted. The main sources of heavy metal pollution were natural sources (57.99%), agricultural sources (38.44%) and traffic sources (3.57%). Natural and agricultural sources were jointly identified as priority control pollution sources and Cd was the priority control pollution element for soil ecological risk. Heavy metal content in Sanya did not pose a non-carcinogenic risk to the population, but there was a carcinogenic risk to children. The element Zn had a high carcinogenic risk to children, and was a priority controlling pollutant element for the risk of human health, with agricultural sources as the priority controlling pollutant source.


Subject(s)
Metals, Heavy , Monte Carlo Method , Soil Pollutants , Metals, Heavy/analysis , Soil Pollutants/analysis , China , Risk Assessment , Humans , Environmental Monitoring/methods , Tropical Climate , Child , Soil/chemistry
17.
Cell Rep Med ; 5(6): 101592, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38843841

ABSTRACT

Environmental lipids are essential for fueling tumor energetics, but whether these exogenous lipids transported into cancer cells facilitate immune escape remains unclear. Here, we find that CD36, a transporter for exogenous lipids, promotes acute myeloid leukemia (AML) immune evasion. We show that, separately from its established role in lipid oxidation, CD36 on AML cells senses oxidized low-density lipoprotein (OxLDL) to prime the TLR4-LYN-MYD88-nuclear factor κB (NF-κB) pathway, and exogenous palmitate transfer via CD36 further potentiates this innate immune pathway by supporting ZDHHC6-mediated MYD88 palmitoylation. Subsequently, NF-κB drives the expression of immunosuppressive genes that inhibit anti-tumor T cell responses. Notably, high-fat-diet or hypomethylating agent decitabine treatment boosts the immunosuppressive potential of AML cells by hijacking CD36-dependent innate immune signaling, leading to a dampened therapeutic effect. This work is of translational interest because lipid restriction by US Food and Drug Administration (FDA)-approved lipid-lowering statin drugs improves the efficacy of decitabine therapy by weakening leukemic CD36-mediated immunosuppression.


Subject(s)
CD36 Antigens , Decitabine , Leukemia, Myeloid, Acute , Lipid Metabolism , Lipoproteins, LDL , CD36 Antigens/metabolism , CD36 Antigens/genetics , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Lipid Metabolism/drug effects , Decitabine/pharmacology , Decitabine/therapeutic use , Lipoproteins, LDL/metabolism , Animals , NF-kappa B/metabolism , Cell Line, Tumor , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Mice , Signal Transduction/drug effects , Tumor Escape/drug effects , Drug Resistance, Neoplasm/drug effects , Toll-Like Receptor 4/metabolism , Acyltransferases/genetics , Immunity, Innate/drug effects , Mice, Inbred C57BL
18.
Plant Dis ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853332

ABSTRACT

Nanhaia speciosa, commonly known as Niudali, is a medicinal woody vine belonging to the Leguminosae family. Valued for its culinary and medicinal properties, it is extensively cultivated, covering approximately 5,973 hm2 in the Guangxi Zhuang Autonomous Region of China. The edible tubers of this plant are reported to possess antibacterial and antioxidant effects (Luo et al., 2023; Shu et al., 2020). In July 2021, a Niudali plantation in Yulin, Guangxi, China (22°64'N; 110°29'E) exhibited leaf spot symptoms, with an incidence rate exceeding 40% across a 46,690 m2 area. Initially, small circular, pale yellow spots appeared on the leaves, which subsequently evolved into dark brown lesions surrounded by yellow halos, ultimately leading to foliage wilting. Leaves exhibiting typical symptoms were collected for pathogen investigation. The leaves were thoroughly washed with sterile water and small tissue fragments (5×5 mm) were excised from the lesion periphery. These fragments were surface-sterilized with 75% ethanol and 1% NaClO, rinsed three times with sterile water, and subsequently cultured on potato dextrose agar (PDA) at 28 °C in darkness for 7 days. Through single-spore isolation, seven isolates with similar morphological traits were obtained. After 7 days of incubation on PDA at 28 °C in dark, the colonies exhibited a white to grey coloration on the upper surface with abundant aerial hyphae, while the underside appeared dark black. The conidia, cylindrical or obclavate in shape, were straight, pale brown, and measured 30.1-128.9 µm × 4.8-15.0 µm (n=50). The morphological characteristics matched those of Corynespora sp.(Wang et al. 2021). For molecular identification, the isolate N5-2 underwent DNA sequence analysis using genomic DNA and primers ITS1/ITS4 and EF1-688F/EF1-1251R. The sequences (ITS: OP550425; TEF1-α: OQ117118) were deposited in GenBank, exhibiting 98% identity to C. cassiicola (OP981637) for TEF1-α and 99% homology to C. cassiicola (OP957070) for ITS. Based on the concatenated ITS and TEF1-α, a maximum likelihood phylogenetic analyses using MEGA7.0 clustered the isolate with C. cassiicola. Consequently, the fungus was identified as C. cassiicola based on its morphological and molecular features. In the pathogenicity test on 1-year-old Nanhaia speciosa seedlings, leaves were gently scratched and inoculated with mycelial plugs (5 mm). Control seedlings received PDA plugs. Five leaves per plant and five plants per treatment were selected for assessment. All seedling were maintained in a greenhouse (12/12h light/dark cycle, 25 ± 2°C, 90% humidity). After a 7-day incubation period, all leaves subjected to fungal inoculation exhibited symptoms consistent with those observed in the field, while control plants remained symptom-free. The fungus was successfully reisolated from the infected leaves in three successive trials, fulfilling Koch's postulates. While C. cassiicola is well-documented for inducing leaf spots on various plant species, including Jasminum nudiflorum, Strobilanthes cusia, Acanthus ilicifolius, Syringa species (Hu et al., 2023; Liu et al., 2023; Xie et al., 2021; Wang et al., 2021), this study represents the first report of C. cassiicola causing leaf spots on Nanhaia speciosa in China. The identification of this pathogen in Nanhaia speciosa has significant implications for future epidemiological investigations and serves as a valuable reference for controlling leaf spot disease in Nanhaia speciosa.

19.
Biomed Environ Sci ; 37(5): 471-478, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38843920

ABSTRACT

Objective: Little is known about the association between whole-blood nicotinamide adenine dinucleotide (NAD +) levels and nabothian cysts. This study aimed to assess the association between NAD + levels and nabothian cysts in healthy Chinese women. Methods: Multivariate logistic regression analysis was performed to analyze the association between NAD + levels and nabothian cysts. Results: The mean age was 43.0 ± 11.5 years, and the mean level of NAD + was 31.3 ± 5.3 µmol/L. Nabothian cysts occurred in 184 (27.7%) participants, with single and multiple cysts in 100 (15.0%) and 84 (12.6%) participants, respectively. The total nabothian cyst prevalence gradually decreased from 37.4% to 21.6% from Q1 to Q4 of NAD + and the prevalence of single and multiple nabothian cysts also decreased across the NAD + quartiles. As compared with the highest NAD + quartile (≥ 34.4 µmol/L), the adjusted odds ratios with 95% confidence interval of the NAD + Q1 was 1.89 (1.14-3.14) for total nabothian cysts. The risk of total and single nabothian cysts linearly decreased with increasing NAD + levels, while the risk of multiple nabothian cysts decreased more rapidly at NAD + levels of 28.0 to 35.0 µmol/L. Conclusion: Low NAD + levels were associated with an increased risk of total and multiple nabothian cysts.


Subject(s)
NAD , Humans , Female , Adult , Middle Aged , NAD/blood , NAD/metabolism , Cysts/blood , Cysts/epidemiology , China/epidemiology
20.
Foods ; 13(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731687

ABSTRACT

Consumers are increasing their daily demand for beef and are becoming more discerning about its nutritional quality and flavor. The present objective was to evaluate how the ration energy content (combined net energy, Nemf) impacts the slaughter performance, carcass characteristics, and meat qualities of Honghe yellow cattle raised in confinement. Fifteen male Honghe yellow cattle were divided into three groups based on a one-way design: a low-energy group (LEG, 3.72 MJ/kg), a medium-energy group (MEG, 4.52 MJ/kg), and a high-energy group (HEG, 5.32 MJ/kg). After a period of 70 days on these treatments, the animals were slaughtered and their slaughter performance was determined, and the longissimus dorsi muscle (LD) and biceps femoris (BF) muscles were gathered to evaluate meat quality and composition. Increasing the dietary energy concentration led to marked improvements (p < 0.05) in the live weight before slaughter (LWBS), weight of carcass, backfat thickness, and loin muscle area. HEG also improved the yield of high-grade commercial cuts (13.47% vs. 10.39%) (p < 0.05). However, meat quality traits were not affected by treatment except for shear force, which was affected by dietary energy. A significant improvement (p < 0.05) in the intramuscular fat (IMF) content was observed in the HEG. Little effect on the amino acid profile was observed (p > 0.05), except for a tendency (p = 0.06) to increase the histidine concentration in the BF muscle. Increasing dietary energy also reduced C22:6n-3 and saturated fatty acids (SFAs) and enhanced C18:1 cis-9 and monounsaturated fatty acids (MUFAs, p < 0.05). Those results revealed that increasing energy levels of diets could enhance slaughter traits and affect the meat quality and fatty acid composition of different muscle tissues of Honghe yellow cattle. These results contribute to the theoretical foundation to formulate nutritional standards and design feed formulas for the Honghe yellow cattle.

SELECTION OF CITATIONS
SEARCH DETAIL