Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Adv ; 149: 213387, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36990026

ABSTRACT

Surgery is the mainstream treatment for melanoma. However, inappropriate post-surgical treatment could result in the tumor recurrence and sever tissue damage, which ultimately leads to the failure of therapy and significantly compromises the therapeutic outcome of surgery. Herein, taking advantages of the co-axial electrospinning technology, we construct a dual-function nanofibrous wound dressing for the post-surgical treatment of melanoma. Si-Ca-P-based mesoporous bioactive glass (MBG) was prepared by the template-sol-gel process, with the compositions being set as 60 SiO2: 36 CaO: 4 P2O5 in mol%. Through rational design, 5-fluorouracil (5-FU)-loaded MBG nanoparticles (MBG-U) are successfully incorporated into the fiber core with biodegradable poly(lactic-co-glycolic acid) (PLGA) as the cladding layer to form the core-shell nanofibers (MBG-U CSF), which achieves sustained releases of chemotherapeutic drug (i.e.,5-FU) and wound healing promotion function. Thereafter, the post-surgical melanoma model was established to evaluate the in-situ anti-cancer and wound healing effect of MBG-U CSF. Thereafter, the post-surgical melanoma model was established to evaluate the anti-cancer and wound healing effect. The results demonstrated that the core-shell nanofibrous dressing almost complete suppressed tumor growth, and simultaneously promoted skin regeneration, which provides a promising strategy for the post-surgical treatment for melanoma.


Subject(s)
Melanoma , Silicon Dioxide , Humans , Silicon Dioxide/pharmacology , Neoplasm Recurrence, Local , Wound Healing , Melanoma/drug therapy , Bandages
2.
J Colloid Interface Sci ; 627: 90-101, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35842969

ABSTRACT

Metal-organic framework materials (MOF) have become a new generation of microwave absorption (MA) materials. However, it is still challenging to design an appropriate microstructure that can efficiently adjust the microwave absorbing characteristics. Herein, a novel bimetal-doped core-shell carbon derived from nickel-cobalt dual-ligand MOF has been successfully prepared. By changing the ratio of the second ligand, the morphology can change from sea urchin-like to rod-like and petal-like shapes, thereby regulating the final wave absorption performance of MOF derivatives. The Bi-MOF-1 exhibited strong microwave absorption (up to -70.70 dB), while Bi-MOF-2 presented broad effective absorption bandwidth (5.92 GHz). The analyses indicated that the excellent impedance matching can be attributed to the double-layer magnetic loss and multiple dielectric loss of the core-shell structure. This work provides a feasible approach for the design and preparation of functional composite structures based on MOF derivatives with controllable microwave absorbing properties.

3.
Biomed Mater ; 16(6)2021 10 04.
Article in English | MEDLINE | ID: mdl-34544064

ABSTRACT

As a biocompatible and biodegradable polymer, poly(lactide-co-glycolide) (PLGA) has been widely used as a carrier to achieve controlled drug delivery in various forms. Focusing on skin tumor treatment, herein 5-fluorouracil (5-FU) was embedded into the core of coaxially electrospun PLGA fibers to get a drug-loaded core-shell fibrous membrane. In the coaxial electrospinning, poly(vinylpyrrolidone) was applied in the inner flow to facilitate the formation of the core-shell structured fibers. The morphology and micro-structure of the fibers were characterized by scanning electron microscope and transmission electron microscope. The influences of the molecular weights and chemical compositions of PLGA copolymers on the release behaviors were studied. The cytotoxicity of the fibers was characterized by cell proliferation and living-dead cell staining experiments. The results showed that faster release rates would be obtained if the copolymers were of lower molecular weights and higher fraction of glycidyl unit. All the prepared 5-FU loaded fibrous membranes were non-cytotoxic, suggesting their potential applications in skin tumor treatment.


Subject(s)
Drug Carriers/chemistry , Fluorouracil , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Povidone/chemistry , Skin Neoplasms/metabolism , Animals , Antimetabolites, Antineoplastic/chemistry , Antimetabolites, Antineoplastic/pharmacology , Cell Line, Tumor , Electrochemical Techniques , Fluorouracil/chemistry , Fluorouracil/pharmacology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...