Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
J Neurosurg ; : 1-11, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608304

ABSTRACT

OBJECTIVE: Circulating tumor cell (CTC) detection is a promising noninvasive technique that can be used to diagnose cancer, monitor progression, and predict prognosis. In this study, the authors aimed to investigate the clinical utility of CTCs in the management of diffuse glioma. METHODS: Sixty-three patients with newly diagnosed diffuse glioma were included in this multicenter clinical cohort. The authors used a platform based on isolation by size of epithelial tumor cells (ISET) to detect and analyze CTCs and circulating tumor microemboli (CTMs) in the peripheral blood of patients both before and after surgery. Least absolute shrinkage and selector operation (LASSO) and Cox regression analyses were used to verify whether CTCs and CTMs are independent prognostic factors for diffuse glioma. RESULTS: CTC levels were closely related to the degree of malignancy, WHO grade, and pathological subtypes. Receiver operating characteristic curve analysis revealed that a high CTC level was a predictor for glioblastoma. The results also showed that CTMs originate from the parental tumor rather than from the circulation and are an independent prognostic factor for diffuse glioma. The postoperative CTC level is related to the peripheral immune system and patient survival. Cox regression analysis showed that postoperative CTC levels and CTM status are independent prognostic factors for diffuse glioma, and CTC- and CTM-based survival models had high accuracy in internal validation. CONCLUSIONS: The authors revealed a correlation between CTCs and clinical characteristics and demonstrated that CTCs and CTMs are independent predictors for the diagnosis and prognosis of diffuse glioma. Their CTC- and CTM-based survival models can enable clinicians to evaluate patients' response to surgery as well as their outcomes.

2.
Nat Cancer ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519786

ABSTRACT

Cancers commonly reprogram translation and metabolism, but little is known about how these two features coordinate in cancer stem cells. Here we show that glioblastoma stem cells (GSCs) display elevated protein translation. To dissect underlying mechanisms, we performed a CRISPR screen and identified YRDC as the top essential transfer RNA (tRNA) modification enzyme in GSCs. YRDC catalyzes the formation of N6-threonylcarbamoyladenosine (t6A) on ANN-decoding tRNA species (A denotes adenosine, and N denotes any nucleotide). Targeting YRDC reduced t6A formation, suppressed global translation and inhibited tumor growth both in vitro and in vivo. Threonine is an essential substrate of YRDC. Threonine accumulated in GSCs, which facilitated t6A formation through YRDC and shifted the proteome to support mitosis-related genes with ANN codon bias. Dietary threonine restriction (TR) reduced tumor t6A formation, slowed xenograft growth and augmented anti-tumor efficacy of chemotherapy and anti-mitotic therapy, providing a molecular basis for a dietary intervention in cancer treatment.

3.
Cancer Biol Ther ; 25(1): 2321770, 2024 12 31.
Article in English | MEDLINE | ID: mdl-38444223

ABSTRACT

GBM is one of the most malignant tumor in central nervous system. The resistance to temozolomide (TMZ) is inevitable in GBM and the characterization of TMZ resistance seriously hinders clinical treatment. It is worthwhile exploring the underlying mechanism of aggressive invasion and TMZ resistance in GBM treatment. Bioinformatic analysis was used to analyze the association between RND1 and a series of EMT-related genes. Colony formation assay and cell viability assay were used to assess the growth of U87 and U251 cells. The cell invasion status was evaluated based on transwell and wound-healing assays. Western blot was used to detect the protein expression in GBM cells. Treatment targeted RND1 combined with TMZ therapy was conducted in nude mice to evaluate the potential application of RND1 as a clinical target for GBM. The overexpression of RND1 suppressed the progression and migration of U87 and U251 cells. RND1 knockdown facilitated the growth and invasion of GBM cells. RND1 regulated the EMT of GBM cells via inhibiting the phosphorylation of AKT and GSK3-ß. The promoted effects of RND1 on TMZ sensitivity was identified both in vitro and in vivo. This research demonstrated that the overexpression of RND1 suppressed the migration and EMT status by downregulating AKT/GSK3-ß pathway in GBM. RND1 enhanced the TMZ sensitivity of GBM cells both in vitro and in vivo. Our findings may contribute to the targeted therapy for GBM and the understanding of mechanisms of TMZ resistance in GBM.


Subject(s)
Glioblastoma , Animals , Mice , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Glycogen Synthase Kinase 3 , Proto-Oncogene Proteins c-akt , Mice, Nude , Epithelial-Mesenchymal Transition/genetics
4.
Nature ; 617(7962): 818-826, 2023 05.
Article in English | MEDLINE | ID: mdl-37198486

ABSTRACT

Cancer cells rewire metabolism to favour the generation of specialized metabolites that support tumour growth and reshape the tumour microenvironment1,2. Lysine functions as a biosynthetic molecule, energy source and antioxidant3-5, but little is known about its pathological role in cancer. Here we show that glioblastoma stem cells (GSCs) reprogram lysine catabolism through the upregulation of lysine transporter SLC7A2 and crotonyl-coenzyme A (crotonyl-CoA)-producing enzyme glutaryl-CoA dehydrogenase (GCDH) with downregulation of the crotonyl-CoA hydratase enoyl-CoA hydratase short chain 1 (ECHS1), leading to accumulation of intracellular crotonyl-CoA and histone H4 lysine crotonylation. A reduction in histone lysine crotonylation by either genetic manipulation or lysine restriction impaired tumour growth. In the nucleus, GCDH interacts with the crotonyltransferase CBP to promote histone lysine crotonylation. Loss of histone lysine crotonylation promotes immunogenic cytosolic double-stranded RNA (dsRNA) and dsDNA generation through enhanced H3K27ac, which stimulates the RNA sensor MDA5 and DNA sensor cyclic GMP-AMP synthase (cGAS) to boost type I interferon signalling, leading to compromised GSC tumorigenic potential and elevated CD8+ T cell infiltration. A lysine-restricted diet synergized with MYC inhibition or anti-PD-1 therapy to slow tumour growth. Collectively, GSCs co-opt lysine uptake and degradation to shunt the production of crotonyl-CoA, remodelling the chromatin landscape to evade interferon-induced intrinsic effects on GSC maintenance and extrinsic effects on immune response.


Subject(s)
Histones , Lysine , Neoplasms , Protein Processing, Post-Translational , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Glutaryl-CoA Dehydrogenase/metabolism , Histones/chemistry , Histones/metabolism , Lysine/deficiency , Lysine/metabolism , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , RNA, Double-Stranded/immunology , Humans , Animals , Mice , Interferon Type I/immunology
5.
Genomics ; 115(3): 110602, 2023 05.
Article in English | MEDLINE | ID: mdl-36907429

ABSTRACT

BACKGROUND: Glioma is the most common primary tumor in the human central nervous system. This study was designed to explore the expression of BZW1 in glioma and its relevance to the clinicopathological features and outcome of glioma patients. METHODS: Glioma transcription profiling data were obtained from The Cancer Genome Atlas (TCGA). TIMER2, GEPIA2, GeneMANIA, and Metascape were searched in the present study. Cell and animal experiments were conducted to verify the effect of BZW1 on glioma cell migration in vitro and in vivo. Transwell assays, western blotting and immunofluorescence assays were performed. RESULTS: We found that BZW1 was highly expressed in gliomas and correlated with poor prognosis. BZW1 could promote glioma proliferation. GO/KEGG analysis revealed that BZW1 was involved in collagen-containing extracellular matrix and was correlated with ECM-receptor interactions, transcriptional misregulation in cancer and the IL-17 signaling pathway. In addition, BZW1 was also associated with the glioma tumor immune microenvironment. CONCLUSION: BZW1 can promote glioma proliferation and progression, and its high expression is correlated with a poor prognosis. BZW1 is also associated with the tumor immune microenvironment of glioma. This study may facilitate further understanding of the critical role of BZW1 in human tumors, including gliomas.


Subject(s)
Brain Neoplasms , Glioma , Animals , Humans , Brain Neoplasms/genetics , Glioma/genetics , Oncogenes , Prognosis , Signal Transduction , Tumor Microenvironment , DNA-Binding Proteins/genetics , Cell Cycle Proteins/genetics
6.
J Transl Med ; 21(1): 136, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36814293

ABSTRACT

BACKGROUND: Mitochondria represent a major source of reactive oxygen species (ROS) in cells, and the direct increase in ROS content is the primary cause of oxidative stress, which plays an important role in tumor proliferation, invasion, angiogenesis, and treatment. However, the relationship between mitochondrial oxidative stress-related genes and glioblastoma (GBM) remains unclear. This study aimed to investigate the value of mitochondria and oxidative stress-related genes in the prognosis and therapeutic targets of GBM. METHODS: We retrieved mitochondria and oxidative stress-related genes from several public databases. The LASSO regression and Cox analyses were utilized to build a risk model and the ROC curve was used to assess its performance. Then, we analyzed the correlation between the model and immunity and mutation. Furthermore, CCK8 and EdU assays were utilized to verify the proliferative capacity of GBM cells and flow cytometry was used to analyze apoptosis rates. Finally, the JC-1 assay and ATP levels were utilized to detect mitochondrial function, and the intracellular ROS levels were determined using MitoSOX and BODIPY 581/591 C11. RESULTS: 5 mitochondrial oxidative stress-related genes (CTSL, TXNRD2, NUDT1, STOX1, CYP2E1) were screened by differential expression analysis and Cox analysis and incorporated in a risk model which yielded a strong prediction accuracy (AUC value = 0.967). Furthermore, this model was strongly related to immune cell infiltration and mutation status and could identify potential targeted therapeutic drugs for GBM. Finally, we selected NUDT1 for further validation in vitro. The results showed that NUDT1 was elevated in GBM, and knockdown of NUDT1 inhibited the proliferation and induced apoptosis of GBM cells, while knockdown of NUDT1 damaged mitochondrial homeostasis and induced oxidative stress in GBM cells. CONCLUSION: Our study was the first to propose a prognostic model of mitochondria and oxidative stress-related genes, which provided potential therapeutic strategies for GBM patients.


Subject(s)
Genes, Mitochondrial , Glioblastoma , Oxidative Stress , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Oxidative Stress/genetics , Prognosis , Reactive Oxygen Species/metabolism
7.
Int J Biol Macromol ; 226: 915-926, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36521710

ABSTRACT

RNA-binding proteins (RBP) regulate several aspects of co- and post-transcriptional gene expression in cancer cells. CSTF2 is involved in the expression of many cellular mRNAs and involved in the 3'-end cleavage and polyadenylation of pre-mRNAs to terminate transcription. However, the role of CSTF2 in human glioblastoma (GBM) and the underlying mechanisms remain unclear. In the present study, CSTF2 was found to be upregulated in GBM, and its high expression predicted poor prognosis. Knockdown CSTF2 induced GBM cell apoptosis both in vitro and in vivo. Specific mechanism studies showed that CSTF2 unstabilized the mRNA of the BAD protein by shortening its 3' UTR. Additionally, an increase in the expression level of CSTF2 decreased the expression level of BAD. In conclusion, CSTF2 binds to the mRNA of the BAD protein to shorten its 3'UTR, which negatively affects the BAD mediated apoptosis and promotes GBM cell survival.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/genetics , Glioblastoma/metabolism , bcl-Associated Death Protein/genetics , bcl-Associated Death Protein/metabolism , Apoptosis/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Cell Proliferation/genetics , Brain Neoplasms/genetics , Brain Neoplasms/metabolism
8.
Oncol Rep ; 49(2)2023 Feb.
Article in English | MEDLINE | ID: mdl-36579671

ABSTRACT

Following the publication of this article, an interested reader drew to the authors' attention that, in Fig. 1F on p. 2311 showing a representative high­grade glioma specimen, the data were either duplicated or overlapping with the data featured in Fig. 1D, which showed a low­grade glioma specimen. After having consulted their original data, the authors have realized that the data for Fig. 1D were inadvertently selected incorrectly. The corrected version of Fig. 1, now showing the correct data for the high­magnification high­grade glioma specimen in Fig. 1F, is shown on the next page. The authors sincerely apologize for the error that was introduced during the preparation of this figure, thank the Editor of Oncology Reports for granting them the opportunity to publish a Corrigendum, and are grateful to the reader for alerting them to this issue. The authors also regret any inconvenience that this mistake may have caused. [Oncology Reports 42: 2309-2322, 2019; DOI: 10.3892/or.2019.7343].

9.
Exp Cell Res ; 417(2): 113231, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35659972

ABSTRACT

As in many other cancers, highly malignant proliferation and disordered cell division play irreplaceable roles in the exceedingly easy recurrence and complex progression of glioblastoma multiforme (GBM); however, mechanistic studies of the numerous regulators involved in this process are still insufficiently thorough. The role of BCAS3 has been studied in other cancers, but its role in GBM is unclear. Here, our goal was to investigate the expression pattern of BCAS3 in GBM and its potential mechanism of action. Using TCGA database and human GBM samples, we found that BCAS3 expression was up-regulated in GBM, and its high expression predicted poor prognosis. To further investigate the relationship between BCAS3 and GBM characteristics, we up-regulated and down-regulated BCAS3 expression in GBM to detect its effect on cell proliferation and cell cycle. At the same time, we established U87 cells stably overexpressing BCAS3 and generated an intracranial xenograft model to investigate the Potential role of BCAS3 in vivo. Finally, based on in vitro cell experiments and in vivo GBM xenograft models, we observed that BCAS3 significantly regulates GBM cell proliferation and cell cycle and that this regulation is associated with p53/GADD45α Signaling pathway. Taken together, our findings suggest that BCAS3 is inextricably linked to the progression of GBM and that targeting BCAS3 may have therapeutic effects in GBM patients.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/pathology , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cell Transformation, Neoplastic , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Humans , Neoplasm Proteins/metabolism , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
10.
Cell Biosci ; 12(1): 53, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35505371

ABSTRACT

BACKGROUND: Ferroptosis is an iron dependent cell death closely associated with p53 signaling pathway and is aberrantly regulated in glioblastoma (GBM), yet the underlying mechanism needs more exploration. Identifying new factors which regulate p53 and ferroptosis in GBM is essential for treatment. METHODS: Glioma cell growth was evaluated by cell viability assays and colony formation assays. Lipid reactive oxygen species (ROS) assays, lipid peroxidation assays, glutathione assays, and transmission electron microscopy were used to assess the degree of cellular lipid peroxidation of GBM. The mechanisms of RND1 in regulation of p53 signaling were analyzed by RT-PCR, western blot, immunostaining, co-immunoprecipitation, ubiquitination assays and luciferase reporter assays. The GBM-xenografted animal model was constructed and the tumor was captured by an In Vivo Imaging System (IVIS). RESULTS: From the The Cancer Genome Atlas (TCGA) database, we summarized that Rho family GTPase 1 (RND1) expression was downregulated in GBM and predicted a better prognosis of patients with GBM. We observed that RND1 influenced the glioma cell growth in a ferroptosis-dependent manner when GBM cell lines U87 and A172 were treated with Ferrostatin-1 or Erastin. Mechanistically, we found that RND1 interacted with p53 and led to the de-ubiquitination of p53 protein. Furthermore, the overexpression of RND1 promoted the activity of p53-SLC7A11 signaling pathway, therefore inducing the lipid peroxidation and ferroptosis of GBM. CONCLUSIONS: We found that RND1, a novel controller of p53 protein and a positive regulator of p53 signaling pathway, enhanced the ferroptosis in GBM. This study may shed light on the understanding of ferroptosis in GBM cells and provide new therapeutic ideas for GBM.

11.
Cell Death Dis ; 13(4): 339, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35418179

ABSTRACT

Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor. The unregulated expression of Claudin-4 (CLDN4) plays an important role in tumor progression. However, the biological role of CLDN4 in GBM is still unknown. This study aimed to determine whether CLDN4 mediates glioma malignant progression, if so, it would further explore the molecular mechanisms of carcinogenesis. Our results revealed that CLDN4 was significantly upregulated in glioma specimens and cells. The inhibition of CLND4 expression could inhibit mesenchymal transformation, cell invasion, cell migration and tumor growth in vitro and in vivo. Moreover, combined with in vitro analysis, we found that CLDN4 can modulate tumor necrosis factor-α (TNF-α) signal pathway. Meanwhile, we also validated that the transforming growth factor-ß (TGF-ß) signal pathway can upregulate the expression of CLDN4, and promote the invasion ability of GBM cells. Conversely, TGF-ß signal pathway inhibitor ITD-1 can downregulate the expression of CLDN4, and inhibit the invasion ability of GBM cells. Furthermore, we found that TGF-ß can promote the nuclear translocation of CLDN4. In summary, our findings indicated that the TGF-ß/CLDN4/TNF-α/NF-κB signal axis plays a key role in the biological progression of glioma. Disrupting the function of this signal axis may represent a new treatment strategy for patients with GBM.


Subject(s)
Claudin-4 , Glioblastoma , Glioma , Transforming Growth Factor beta , Cell Line, Tumor , Claudin-4/genetics , Claudin-4/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Glioma/metabolism , Humans , NF-kappa B/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Up-Regulation
12.
CNS Neurosci Ther ; 28(6): 897-912, 2022 06.
Article in English | MEDLINE | ID: mdl-35212145

ABSTRACT

AIMS: Circular RNAs have been reported to play key roles in the progression of various cancers, including gliomas. The present study was designed to investigate the role of hsa_circ_0072309 in autophagy and temozolomide (TMZ) sensitivity in glioblastoma (GBM). METHODS: The effect of hsa_circ_0072309 on autophagy and TMZ sensitivity were examined by GFP-RFP-LC3, transmission electron microscopy(TEM), flow cytometry, Western blot, and immunofluorescence. The mechanism of hsa_circ_0072309 regulating p53 signaling pathway was analyzed using Western blot, IP, and rescue experiments. RESULTS: Low hsa_circ_0072309 expression predicts poor prognosis for glioma patients. The regulation of hsa_circ_0072309 on autophagy and TMZ sensitivity depends on the status of p53. Hsa_circ_0072309 promoted autophagy by p53 signaling pathway and enhanced sensitivity of glioblastoma to temozolomide (TMZ) in p53 wild-type GBM, but not in p53 mutant GBM. Hsa_circ_0072309 inhibits p53 ubiquitination and increases the stability of p53 protein in the context of p53 wild-type. MiR-100 mediates hsa_circ_0072309 regulating p53. P53 inhibitor or autophagy inhibitor could reverse the effect of hsa_circ_0072309 on TMZ sensitivity in p53 wild-type GBM. CONCLUSIONS: This study revealed a function of hsa_circ_0072309 promoting autophagy by p53 signaling pathway and enhancing TMZ sensitivity. These findings demonstrated that hsa_circ_0072309 may be a potential and promising target in designing the treatment strategy for GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , MicroRNAs , Apoptosis , Autophagy , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Glioma/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Temozolomide/pharmacology , Temozolomide/therapeutic use , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
13.
Cell Biosci ; 12(1): 20, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35216629

ABSTRACT

BACKGROUND: Ferroptosis plays a key role in human cancer, but its function and mechanism in glioma is not clear. P62/SQSTM1 was reported to inhibit ferroptosis via the activation of NRF2 signaling pathway. In this study we reveal a dual role of p62 in ferroptosis of glioblastoma (GBM) according to p53 status. METHOD: Lipid peroxidation analysis, transmission electron microscopy (TEM), GSH assay were performed to determine the level of ferroptosis. Western blot and qPCR were obtained to detect the expression of ferroptosis markers. Construction of mutant plasmids, immunoprecipitation, luciferase assay and rescue-experiments were performed to explore the regulatory mechanism. RESULTS: P62 overexpression facilitates ferroptosis and inhibits SLC7A11 expression in p53 mutant GBM, while attenuates ferroptosis and promotes SLC7A11 expression in p53 wild-type GBM. P62 associates with p53 and inhibits its ubiquitination. The p53-NRF2 association and p53-mediated suppression of NRF2 antioxidant activity are diversely regulated by p62 according to p53 status. P53 mutation status is required for the dual regulation of p62 on ferroptosis. In wild-type p53 GBM, the classical p62-mediated NRF2 activation pathway plays a major regulatory role of ferroptosis, leading to increased SLC7A11 expression, resulting in a anti-ferroptosis role. In mutant p53 GBM, stronger interaction of mutant-p53/NRF2 by p62 enhance the inhibitory effect of mutant p53 on NRF2 signaling, which reversing the classical p62-mediated NRF2 activation pathway, together with increased p53's transcriptional suppression on SLC7A11 by p62, leading to a decrease of SLC7A11, resulting in a pro-ferroptosis role. CONCLUSION: Together, this study shows novel molecular mechanisms of ferroptosis regulated by p62; the mutation status of p53 is an important factor that determines the therapeutic response to p62-mediated ferroptosis-targeted therapies in GBM.

14.
Front Cell Neurosci ; 16: 1094500, 2022.
Article in English | MEDLINE | ID: mdl-36601430

ABSTRACT

Ischemic stroke (IS) accounts for more than 80% of strokes and is one of the leading causes of death and disability in the world. Due to the narrow time window for treatment and the frequent occurrence of severe bleeding, patients benefit less from early intravenous thrombolytic drug therapy. Therefore, there is an urgent need to explore the molecular mechanisms poststroke to drive the development of new therapeutic approaches. Immunogenic cell death (ICD) is a type of regulatory cell death (RCD) that is sufficient to activate the adaptive immune response of immunocompetent hosts. Although there is growing evidence that ICD regulation of immune responses and immune responses plays an important role in the development of IS, the role of ICD in the pathogenesis of IS has rarely been explored. In this study, we systematically evaluated ICD-related genes in IS. The expression profiles of ICD-related genes in IS and normal control samples were systematically explored. We conducted consensus clustering, immune infiltration analysis, and functional enrichment analysis of IS samples using ICD differentially expressed genes. The results showed that IS patients could be classified into two clusters and that the immune infiltration profile was altered in different clusters. In addition, we performed machine learning to screen nine signature genes that can be used to predict the occurrence of disease. We also constructed nomogram models based on the nine risk genes (CASP1, CASP8, ENTPD1, FOXP3, HSP90AA1, IFNA1, IL1R1, MYD88, and NT5E) and explored the immune infiltration correlation, gene-miRNA, and gene-TF regulatory network of the nine risk genes. Our study may provide a valuable reference for further elucidation of the pathogenesis of IS and provide directions for drug screening, personalized therapy, and immunotherapy for IS.

15.
Hum Cell ; 35(1): 238-249, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34791597

ABSTRACT

Ferroptosis, as an new form of non-apoptotic regulated cell death, plays an important role in human cancers. Although it is reported that HSP27 is an novel regulator of ferroptosis in cancer, it remains unknown how HSP27 affects ferroptosis in glioma. In this study, we examined the effect of HSP27 on the ferroptosis of glioblasotma. HSP27 overexpression protects glioblastoma cells from erastin-induced ferroptosis while HSP27 depletion promotes erastin-induced ferroptosis of glioblastoma. Notably, HSP27 phosphorylation is required for the protective function of HSP27 in erastin-induced ferroptosis. Overall, our study reveal novel molecular mechanisms of ferroptosis in glioma and also identify HSP27 as a negative regulator of ferroptosis and a potential target for the treatment of glioma.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Ferroptosis/genetics , Glioblastoma/genetics , Glioblastoma/pathology , HSP27 Heat-Shock Proteins/physiology , Brain Neoplasms/therapy , Cell Line, Tumor , Ferroptosis/physiology , Gene Expression/genetics , Glioblastoma/therapy , HSP27 Heat-Shock Proteins/genetics , HSP27 Heat-Shock Proteins/metabolism , Humans , Molecular Targeted Therapy , Phosphorylation , Piperazines
16.
Front Oncol ; 11: 774332, 2021.
Article in English | MEDLINE | ID: mdl-34804978

ABSTRACT

Aberrant reprogramming of metabolism has been considered a hallmark in various malignant tumors. The metabolic changes of amino acid not only have dramatic effects in cancer cells but also influence their immune-microenvironment in gliomas. However, the features of the amino acid metabolism-related and immune-associated gene set have not been systematically described. The expression level of mRNA was obtained from The Cancer Genome Atlas database and the Chinese Glioma Genome Atlas database, which were used as training set and validation set, respectively. Different bioinformatics and statistical methods were combined to construct a robust amino metabolism-related and immune-associated risk signature for distinguishing prognosis and clinical pathology features. Constructing the nomogram enhanced risk stratification and quantified risk assessment based on our gene model. Besides this, the biological mechanism related to the risk score was investigated by gene set enrichment analysis. Hub genes of risk signature were identified by the protein-protein interaction network. The amino acid metabolism-related and immune-associated gene signature recognized high-risk patients, defined as an independent risk factor for overall survival. The nomogram exhibited a high accuracy in predicting the overall survival rate for glioma patients. Furthermore, the high risk score hinted an immunosuppressive microenvironment and a lower sensitivity of immune checkpoint blockade therapy and also identified PSMC5 and PSMD3 as novel biomarkers in glioma. In conclusion, a novel amino acid metabolism-related and immune-associated risk signature for predicting prognosis in glioma has been constructed and identified as two potential novel biomarkers.

17.
Front Mol Neurosci ; 14: 720899, 2021.
Article in English | MEDLINE | ID: mdl-34776862

ABSTRACT

Background: Lower-grade glioma (LGG) is the most common histology identified in gliomas, a heterogeneous tumor that may develop into high-grade malignant glioma that seriously shortens patient survival time. Recent studies reported that glutamatergic synapses might play an essential role in the progress of gliomas. However, the role of glutamatergic synapse-related biomarkers in LGG has not been systemically researched yet. Methods: The mRNA expression data of glioma and normal brain tissue were obtained from The Cancer Genome Atlas database and Genotype-Tissue Expression, respectively, and the Chinese Glioma Genome Atlas database was used as a validation set. Difference analysis was performed to evaluate the expression pattern of glutamatergic synapse-related genes (GSRGs) in LGG. The least absolute shrinkage and selection operator (LASSO) Cox regression was applied to construct the glutamatergic synapse-related risk signature (GSRS), and the risk score of each LGG sample was calculated based on the coefficients and expression value of selected GSRGs. Univariate and multivariate Cox regression analyses were used to investigate the prognostic value of risk score. Immunity profile and single-sample gene set enrichment analysis (ssGSEA) were performed to explore the association between risk score and the characters of tumor microenvironment in LGG. Gene set variation analysis (GSVA) was performed to investigate the potential pathways related to GSRS. The HPA database and real-time PCR were used to identify the expression of hub genes identified in GSRS. Results: A total of 22 genes of 39 GSRGs were found differentially expressed among normal and LGG samples. Through the LASSO algorithm, 14-genes GSRS constructed were associated with the prognosis and clinicopathological features of patients with LGG. Furthermore, the risk score level was significantly positively correlated with the infiltrating level of immunosuppressive cells, including M2 macrophages and regulatory T cells. GSVA identified a series of cancer-related pathways related to GSRS, such as P13K-AKT and P53 pathways. Moreover, ATAD1, NLGN2, OXTR, and TNR, hub genes identified in GSRS, were considered as potential prognostic biomarkers in LGG. Conclusion: A 14-genes GSRS was constructed and verified in this study. We provided a novel insight into the role of GSRS in LGG through a series of bioinformatics methods.

18.
Front Immunol ; 12: 730289, 2021.
Article in English | MEDLINE | ID: mdl-34659216

ABSTRACT

Gliomas are the most common primary malignant tumor in adults' central nervous system. While current research on glioma treatment is advancing rapidly, there is still no breakthrough in long-term treatment. Abnormalities in the immune regulatory mechanism in the tumor microenvironment are essential to tumor cell survival. The alteration of amino acid metabolism is considered a sign of tumor cells, significantly impacting tumor cells and immune regulation mechanisms in the tumor microenvironment. Despite the fact that the metabolism of tryptophan in tumors is currently discussed in the literature, we herein focused on reviewing the immune regulation of tryptophan metabolism in the tumor microenvironment of gliomas and analyzed possible immune targets. The objective is to identify potential targets for the treatment of glioma and improve the efficiency of immunotherapy.


Subject(s)
Brain Neoplasms/metabolism , Glioma/metabolism , Tryptophan/metabolism , Tumor Microenvironment , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Cell Differentiation , Glioma/drug therapy , Glioma/immunology , Glioma/pathology , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Tryptophan/immunology
19.
Med Oncol ; 38(11): 132, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34581882

ABSTRACT

WAC is closely related to the occurrence and development of tumors. However, its role in human glioblastoma (GBM) and its potential regulatory mechanisms have not been investigated. This study demonstrated that WAC is downregulated in GBM, and its low expression predicts a poor prognosis. We investigated the effect of WAC on the proliferation of glioma cells through a CCK-8 assay, EdU incorporation, and cell formation. The effects of WAC on apoptosis and autophagy in glioma were determined by flow cytometry, TUNEL detection, immunofluorescence, q-PCR, WB, and scanning electron microscopy. We found that overexpression of WAC inhibited the proliferation of glioma cells, promoted apoptosis, and induced autophagy. Therefore, WAC is likely to play a role as a new regulatory molecule in glioma.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Apoptosis , Autophagy/physiology , Brain Neoplasms/pathology , Glioblastoma/pathology , Tumor Suppressor Proteins/physiology , Brain Neoplasms/mortality , Brain Neoplasms/prevention & control , Cell Line, Tumor , Cell Proliferation , Glioblastoma/mortality , Glioblastoma/prevention & control , Humans , Signal Transduction
20.
Nat Commun ; 12(1): 4227, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34244482

ABSTRACT

Glycine decarboxylase (GLDC) is a key enzyme of glycine cleavage system that converts glycine into one-carbon units. GLDC is commonly up-regulated and plays important roles in many human cancers. Whether and how GLDC is regulated by post-translational modifications is unknown. Here we report that mechanistic target of rapamycin complex 1 (mTORC1) signal inhibits GLDC acetylation at lysine (K) 514 by inducing transcription of the deacetylase sirtuin 3 (SIRT3). Upon inhibition of mTORC1, the acetyltransferase acetyl-CoA acetyltransferase 1 (ACAT1) catalyzes GLDC K514 acetylation. This acetylation of GLDC impairs its enzymatic activity. In addition, this acetylation of GLDC primes for its K33-linked polyubiquitination at K544 by the ubiquitin ligase NF-X1, leading to its degradation by the proteasomal pathway. Finally, we find that GLDC K514 acetylation inhibits glycine catabolism, pyrimidines synthesis and glioma tumorigenesis. Our finding reveals critical roles of post-translational modifications of GLDC in regulation of its enzymatic activity, glycine metabolism and tumorigenesis, and provides potential targets for therapeutics of cancers such as glioma.


Subject(s)
Carcinogenesis/genetics , Glioma/genetics , Glycine Dehydrogenase (Decarboxylating)/metabolism , Glycine/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Acetyl-CoA C-Acetyltransferase/metabolism , Acetylation , Animals , Carcinogenesis/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Glioma/metabolism , Glioma/pathology , HEK293 Cells , Humans , Male , Mice , Proteasome Endopeptidase Complex/metabolism , Protein Processing, Post-Translational , Proteolysis , Pyrimidines/biosynthesis , Repressor Proteins/metabolism , Sirtuin 3/genetics , Sirtuin 3/metabolism , Transcriptional Activation , Ubiquitination/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...