Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.043
Filter
1.
J Colloid Interface Sci ; 670: 428-438, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38772259

ABSTRACT

Although photocatalytic H2 production based on semiconductor materials has a wide potential application, it still facing challenges such as slow reaction kinetics or complex synthesis processes. To meet these challenges, the carbon dots loaded black g-C3N4 (CN-B-CDs) was synthesized by simple calcination method to achieve efficient photothermal-assisted photocatalytic H2 production. Photothermal imaging experiments confirmed the photothermal effect of CN-B and CDs as dual heat sources to increase the temperature of the composite system, thus improving the effective separation of photo-generated charges. In addition, multiple photocatalytic H2 production tests exhibited that CN-B-CDs photocatalysts not only have strong stability but also can accommodate a variety of complex water bodies, which displayed the potential for industrial application. This study combined the photothermal effect and the mechanism by which the CDs promote the charge transfer to design a new photocatalytic H2 production system and provided a new scheme for achieving efficient photothermal-assisted photocatalytic H2 production using carbon-based materials.

2.
World J Oncol ; 15(3): 382-393, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38751704

ABSTRACT

Multiple factors have engaged in the progression of thyroid cancer (TC). Recent studies have shown that viral infection can be a critical factor in the pathogenesis of TC. Viruses, such as Epstein-Barr virus (EBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), may play an essential role in the occurrence, development, and even prognosis in TC. This review mainly explored the potential role of viral infection in the progress of TC. The possible mechanisms could be recognizing the host cell, binding to the receptors, affecting oncogenes levels, releasing viral products to shape a beneficial environment, interacting with immune cells to induce immune evasion, and altering the pituitary-thyroid axis. Thus, comprehensive knowledge may provide insights into finding molecular targets for diagnosing and treating virus-related TC.

3.
J Neurointerv Surg ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38719444

ABSTRACT

BACKGROUND: Flow diverter devices (FDs) are increasingly used for treating unruptured intracranial aneurysms (UIAs), but limited studies compared different FDs. OBJECTIVE: To conduct a propensity score matched analysis comparing the Pipeline embolization device (PED) and Tubridge embolization device (TED) for UIAs. METHODS: Patients with UIAs treated with either PED or TED between July 2016 and July 2022 were included. Propensity score matching was performed to adjust for age, sex, comorbidities, smoking, drinking, aneurysm size, morphology, neck, location, parent artery diameter, adjunctive coiling, and angiographic follow-up duration. Perioperative complications and clinical and angiographic outcomes were compared after matching. RESULTS: 735 patients treated by PED and 290 patients treated by TED were enrolled. Compared with the PED group, patients in the TED group had a greater number of women and patients with ischemia, a smaller proportion of vertebrobasilar and non-saccular aneurysms, a smaller size and neck, and fewer adjunctive coils and overlapping stents, but a larger parent artery diameter and lumen disparities. After adjusting for these differences, 275 pairs were matched. No differences were found in perioperative complications (4.4% vs 2.5%, P=0.350), in-stent stenosis (16.0% vs 15.6%, P>0.999), or favorable prognosis (98.9% vs 98.5%, P>0.999). However, PED showed a trend towards better complete occlusion over a median 8-month angiographic follow-up (81.8% vs 75.3%, P=0.077). CONCLUSION: Compared with PED, TED provides a comparable rate of perioperative and short-term outcomes. Nevertheless, a better occlusion status in the PED group needs to be further verified over a longer follow-up period.

4.
J Colloid Interface Sci ; 670: 41-49, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38754330

ABSTRACT

Iontronic pressure sensors have garnered significant attention for their potential in wearable electronic devices. While simple microstructures can enhance sensor sensitivity, the majority of them predominantly amplify sensitivity at lower pressure ranges and fail to enhance sensitivity at higher pressure ranges, leading to nonlinearity. In the absence of linear sensitivity in a pressure sensor, users are unable to derive precise information from its output, necessitating further signal processing. Hence, crafting a linearity flexible pressure sensor through a straightforward approach remains a formidable task. Herein, a double-sided microstructured flexible iontronic pressure sensor is presented with wide linear sensing range. The ionic gel is made by 1-Ethyl-3-methylimidazolium bis(tri-fluoromethylsulfonyl)imide (EMIM:TFSI) into the matrix of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), which acts as active layer, featuring irregular microstructures (IMS) and pyramid microstructures (PMS) on both sides. Unlike previous complex methods, IMS and uniform PMS are easily and achieved through pattern transfer from a sandpaper mold and micro-pyramid template. The iontronic pressure sensor exhibits exceptional signal linearity with R2 values of 0.9975 and 0.9985, in the wide pressure range from 100 to 760 kPa and 760 kPa to 1000 kPa, respectively. This outstanding linearity and wide sensing range stem from a delicate balance between microstructure compression and mechanical alignment at the ionic gel interface. This study provides valuable insights into achieving linear responses by strategically designing microstructures in flexible pressure sensors, with potential applications in intelligent robots and health monitoring.

5.
Opt Lett ; 49(9): 2269-2272, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691696

ABSTRACT

We proposed spectrally temporally cascaded optical parametric amplification (STOPA) using pump energy recycling to simultaneously increase spectral bandwidth and conversion efficiency in optical parametric amplification (OPA). Using BiB3O6 and KTiOAsO4 nonlinear crystals, near-single-cycle mid-infrared (MIR) pulses with maximum energy conversion efficiencies exceeding 25% were obtained in simulations. We successfully demonstrated sub-two-cycle, CEP-stable pulse generation at 1.8 µm using a four-step STOPA system in the experiment. This method provides a solution to solve the limitations of the gain bandwidth of nonlinear crystals and the low conversion efficiency in broadband OPA systems, which is helpful for intense attosecond pulse generation and strong laser field physics studies.

6.
BMC Med Educ ; 24(1): 531, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38741079

ABSTRACT

BACKGROUND: An urgent need exists for innovative surgical video recording techniques in head and neck reconstructive surgeries, particularly in low- and middle-income countries where a surge in surgical procedures necessitates more skilled surgeons. This demand, significantly intensified by the COVID-19 pandemic, highlights the critical role of surgical videos in medical education. We aimed to identify a straightforward, high-quality approach to recording surgical videos at a low economic cost in the operating room, thereby contributing to enhanced patient care. METHODS: The recording was comprised of six head and neck flap harvesting surgeries using GoPro or two types of digital cameras. Data were extracted from the recorded videos and their subsequent editing process. Some of the participants were subsequently interviewed. RESULTS: Both cameras, set at 4 K resolution and 30 frames per second (fps), produced satisfactory results. The GoPro, worn on the surgeon's head, moves in sync with the surgeon, offering a unique first-person perspective of the operation without needing an additional assistant. Though cost-effective and efficient, it lacks a zoom feature essential for close-up views. In contrast, while requiring occasional repositioning, the digital camera captures finer anatomical details due to its superior image quality and zoom capabilities. CONCLUSION: Merging these two systems could significantly advance the field of surgical video recording. This innovation holds promise for enhancing technical communication and bolstering video-based medical education, potentially addressing the global shortage of specialized surgeons.


Subject(s)
COVID-19 , Video Recording , Humans , COVID-19/epidemiology , Plastic Surgery Procedures/education , Surgical Flaps , SARS-CoV-2 , Head/surgery , Neck/surgery
7.
J Pain Res ; 17: 1693-1707, 2024.
Article in English | MEDLINE | ID: mdl-38746535

ABSTRACT

Background: Cerebral blood flow and vascular structures serve as the fundamental components of brain metabolism and circulation. Acupuncture, an alternative and complementary medical approach, has demonstrated efficacy in treating cerebral ischemic stroke (CIS). Nevertheless, the mechanisms underlying the impact of acupuncture on vascular smooth muscle cell (VSMC) function remain uncertain. The objective of this systematic review and meta-analysis is to assess the alterations in VSMC function following acupuncture stimulation in CIS models. Methods: The databases PubMed, Web of Science, SCOPUS, and EMBASE were queried until November 2022 using a predetermined search strategy. The FORMAT BY SYRCLE guidelines were adhered to, and the risk of bias of the included studies was evaluated using the Risk of Bias tool developed by the Systematic Review Centre for Laboratory Animal Experimentation. The random-effects model was employed to estimate the standardized mean difference (SMD). Results: Eighteen articles are included in this review. Acupuncture showed significant positive effects on the region cerebral blood flow (SMD=8.15 [95% CI, 4.52 to 11.78]) and neurological deficiency (SMD=-3.75 [95% CI, -5.54 to -1.97]). Descriptive analysis showed a probable mechanism of acupuncture stimulation in CIS rats related to VSMC function. Limitations and publication bias were presented in the studies. Conclusion: In this systematic review and meta-analysis, our findings indicate that acupuncture stimulation has the potential to improve regional cerebral blood flow and alleviate neurological deficits, possibly by regulating VSMC function. However, it is important to exercise caution when interpreting these results due to the limitations of animal experimental design and methodological quality.

8.
Endocrine ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558373

ABSTRACT

OBJECTIVE: Papillary thyroid carcinoma (PTC) is a common malignancy whose incidence is three times greater in females than in males. The prognosis of ageing patients is poor. This research was designed to construct models to predict the overall survival of elderly female patients with PTC. METHODS: We developed prediction models based on the random survival forest (RSF) algorithm and traditional Cox regression. The data of 4539 patients were extracted from the Surveillance, Epidemiology, and End Results (SEER) database. Twelve variables were analysed to establish the models. The C-index and the Brier score were selected to evaluate the discriminatory ability of the models. Time-dependent receiver operating characteristic (ROC) curves were also drawn to evaluate the accuracy of the models. The clinical benefits of the two models were compared on the basis of the DCA curve. In addition, the Shapley Additive Explanations (SHAP) plot was used to visualize the contribution of the variables in the RSF model. RESULTS: The C-index of the RSF model was 0.811, which was greater than that of the Cox model (0.781). According to the Brier score and the area under the ROC curve (AUC), the RSF model performed better than the Cox model. On the basis of the DCA curve, the RSF model demonstrated fair clinical benefit. The SHAP plot showed that age was the most important variable contributing to the outcome of PTC in elderly female patients. CONCLUSIONS: The RSF model we developed performed better than the Cox model and might be valuable for clinical practice.

9.
Chemphyschem ; : e202400052, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629246

ABSTRACT

A new group of BF3 complexing phosphate/phosphonate ionic liquids (ILs) [Emim][X(BF3)2] (X = dimethyl phosphate, diethyl phosphate, methyl phosphonate, and ethyl phosphonate) were synthesized and characterized. Key thermophysical properties of the new complex ionic liquids, including density, viscosity, conductivity, surface tension, solid-liquid phase transition, and thermal stability were determined and compared with those of [Emim][X]. Some other important thermophysical properties such as isobaric thermal expansion coefficient, molecular volume, standard molar entropy, and lattice potential energy were obtained from measured density data, and the free volume was estimated by a linear equation presented in this article, while critical temperature, normal boiling temperature, and enthalpy of vaporization were estimated from measured surface tension and density data. Furthermore, Fragility study shows that [Emim][X(BF3)2] could be considered as metallic glass-forming liquids, while [Emim][X] could be considered as extremely fragile liquids. The ionicity of [Emim][X(BF3)2] was predicted by Walden rule, and the result shows that these ILs fit well with Walden law. The key features of these complex ILs are their extremely low glass transition (-95.33~-98.46 ℃) without melting, considerably low viscosities (33.876~58.117 mPa·s), and high values of free volume fraction (comparable to [Omim][BF4], [Emim][NTf2], and [Emim][TCB]).

10.
Adv Mater ; : e2313752, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38576272

ABSTRACT

Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction-integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed. Using a novel decoupling chemical vapor deposition growth strategy, high-quality and layer-limited graphene is prepared on noncatalytic nonmetallic GFF in a controlled manner; this is pivotal to realizing GGFF with the desired compatibility among high conductivity, low electromagnetic reflectivity, and high electromagnetic transmissivity. At the same sheet resistance over a wide range of values (250-3000 Ω·sq-1), the GGFF exhibits significantly lower electromagnetic reflectivity (by 0.42-0.51) and higher transmissivity (by 0.27-0.62) than those of its metal-based conductive counterpart (CuGFF). The material design strategy reported herein provides a constructive solution to eliminate the incompatibility between electrical conductivity and electromagnetic transmissivity faced by conventional conductive materials, spotlighting the applicability of GGFF in electric heating scenarios in radar, antenna, and stealth systems.

11.
J Matern Fetal Neonatal Med ; 37(1): 2340597, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38639583

ABSTRACT

Background: The fetal stage is pivotal for growth and development, making it susceptible to the adverse effects of prenatal metal(loid)s exposure. This study evaluated the influence of gestational diabetes mellitus (GDM) on the placental transfer efficiency (PTE) of metal(loid)s and thus assessed the associated risks of prenatal metal(loid)s exposure.Materials and method: Designed as a case-control study, it incorporated 114 pregnant participants: 65 without complications and 49 diagnosed with GDM. We utilized inductively coupled plasma mass spectrometry to quantify seven metal(loid)s - manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), gallium (Ga), arsenic (As), and cadmium (Cd) - in both maternal venous blood and umbilical cord blood.Result: We compared metal(loid)s concentrations and their PTE in the maternal and cord blood between the two groups. Notably, Cu, Ga, As, and Co levels in the umbilical cord blood of the GDM group (657.9 ± 167.2 µg/L, 1.23 ± 0.34 µg/L, 5.19 ± 2.58 µg/L, 1.09 ± 2.03 µg/L) surpassed those of the control group, with PTE of Co showing a marked increase in GDM group (568.8 ± 150.4 µg/L, 1.05 ± 0.31 µg/L, 4.09 ± 2.54 µg/L, 0.47 ± 0.91 µg/L), with PTE of Co showing a marked increase in GDM group (p < 0.05). The PTE of Ni exhibited a reduction in the GDM group relative to the control group, yet this decrease did not reach statistical significance.Conclusion: This study indicates that GDM can influence the placental transfer efficiency of certain metal(loid)s, leading to higher concentrations of Co, Cu, Ga, and As in the umbilical cord blood of the GDM group. The marked increase in the PTE of Co suggests a potential link to placental abnormal angiogenesis due to GDM.


Subject(s)
Arsenic , Diabetes, Gestational , Pregnancy , Female , Humans , Cobalt , Mothers , Case-Control Studies , Placenta
12.
Eur J Med Chem ; 271: 116406, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38688064

ABSTRACT

NRAS mutation is the second most common oncogenic factor in cutaneous melanoma. Inhibiting NRAS translation by stabilizing the G-quadruplex (G4) structure with small molecules seems to be a potential strategy for cancer therapy due to the NRAS protein's lack of a druggable pocket. To enhance the effects of previously reported G4 stabilizers quindoline derivatives, we designed and synthesized a novel series of quindoline derivatives with fork-shaped side chains by introducing (alkylamino)alkoxy side chains. Panels of experimental results showed that introducing a fork-shaped (alkylamino)alkoxy side chain could enhance the stabilizing abilities of the ligands against NRAS RNA G-quadruplexes and their anti-melanoma activities. One of them, 10b, exhibited good antitumor activity in the NRAS-mutant melanoma xenograft mouse model, showing the therapeutic potential of this kind of compounds.


Subject(s)
Antineoplastic Agents , Drug Design , G-Quadruplexes , GTP Phosphohydrolases , Membrane Proteins , G-Quadruplexes/drug effects , Humans , Animals , GTP Phosphohydrolases/metabolism , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Membrane Proteins/genetics , Structure-Activity Relationship , Molecular Structure , Melanoma/drug therapy , Melanoma/pathology , Dose-Response Relationship, Drug , Cell Proliferation/drug effects , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , Cell Line, Tumor , Drug Screening Assays, Antitumor , RNA/metabolism , RNA/chemistry , Protein Biosynthesis/drug effects , Alkaloids , Quinolines
13.
J Tissue Viability ; 33(2): 197-201, 2024 May.
Article in English | MEDLINE | ID: mdl-38561302

ABSTRACT

OBJECTIVE: To investigate the incidence of iatrogenic skin injuries in neonates across 22 neonatal intensive care units (NICUs) in China. DESIGN: Prospective study. SETTING: 22 NICUs in China. PATIENTS: Infants admitted to NICU. INTERVENTIONS: None. MEASUREMENTS: The "Iatrogenic Skin Injuries Data Collection Form of infants" were used to collect the data during hospitalization. MAIN RESULTS: A total of 8126 neonates who were hospitalized in 22 tertiary hospitals across 15 provinces, cities, and autonomous regions of China between December 1, 2019 and January 31, 2020 were analyzed. Five hundred and twenty-one infants had iatrogenic skin injuries, including 250 with diaper dermatitis (47.98%), 70 with physicochemical factor-related skin lesions (PCFRSIs) (13.44%), 81 with medical device-related pressure injuries (MDRPIs) (15.55%), and 69 with medical adhesive-related skin injuries (MARSIs) (13.24%), accounting for 91% of the total number of iatrogenic injuries. Among these, diaper dermatitis was closely related to the skin and feeding status. Furthermore, the risk was higher among neonates who had skin damage upon admission or were already fully fed orally. The influencing factors of MDRPIs and MARSIs were similar. They were negatively associated with gestational age and birth weight, and were closely related to the presence of various tubes. CONCLUSIONS: Diaper dermatitis, PCFRSIs, MDRPIs, and MARSIs were the four common types of iatrogenic skin injuries in newborns. The various types of iatrogenic skin injuries were influenced by varying factors. Specialized nursing measurements can reduce the likelihood of these injuries.


Subject(s)
Iatrogenic Disease , Intensive Care Units, Neonatal , Humans , Intensive Care Units, Neonatal/statistics & numerical data , Intensive Care Units, Neonatal/organization & administration , Infant, Newborn , China/epidemiology , Prospective Studies , Male , Iatrogenic Disease/epidemiology , Female , Incidence , Infant , Skin/injuries , East Asian People
14.
Front Cell Infect Microbiol ; 14: 1381537, 2024.
Article in English | MEDLINE | ID: mdl-38633748

ABSTRACT

Background: Toxoplasma gondii (T. gondii) is a significant protozoan pathogen among food animals. Despite the threat to public health by T. gondii infections, there's limited understanding of its seroprevalence and trends in food animals across mainland China. This study aimed to estimate the seroprevalence of T. gondii infections among swine, sheep, goats, chickens, and cattle in mainland China from 2010 to 2023. Methods: We searched cross-sectional studies published between 2010 and 2023 that reported the prevalence of T. gondii in food animals from databases including PubMed, Embase, Web of Science, China Biology Medicine Disc (CBM), China National Knowledge Infrastructure (CNKI), Wanfang data, and the China Science and Technology Journal Database (CQVIP). We performed subgroup analyses to explore the impact of different factors on the seroprevalence of T. gondii. Pooled estimates of T. gondii seroprevalence were calculated with a random-effects model. Results: An analysis of 184 studies involving 211985 animals revealed a T. gondii overall seroprevalence of 15.3% (95% CI: 13.1-17.8). Although the seroprevalence of food animals across mainland China was relatively stable from 2010 to 2023, notable variations were observed across different animal types and regions (P < 0.01), along with changes in geographical distribution. Sample type, detection method, animal age, and history of abortion were identified as key risk factors for T. gondii seroprevalence. Conclusion: The study conducted a meta-analysis on the seroprevalence of T. gondii in mainland China's Food Animals from 2010 to 2023, and identified key risk factors. These findings advance our understanding of T. gondii infection dynamics, offering critical insights for developing control strategies and guiding public health policies.


Subject(s)
Toxoplasma , Toxoplasmosis, Animal , Pregnancy , Female , Animals , Swine , Cattle , Sheep , Seroepidemiologic Studies , Cross-Sectional Studies , Chickens , Risk Factors , China/epidemiology , Goats , Antibodies, Protozoan
15.
Nano Lett ; 24(17): 5206-5213, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38647212

ABSTRACT

Single Atoms Catalysts (SACs) have emerged as a class of highly promising heterogeneous catalysts, where the traditional bottom-up synthesis approaches often encounter considerable challenges in relation to aggregation issues and poor stability. Consequently, achieving densely dispersed atomic species in a reliable and efficient manner remains a key focus in the field. Herein, we report a new facile electrochemical knock-down strategy for the formation of SACs, whereby the metal Zn clusters are transformed into single atoms. While a defect-rich substrate plays a pivotal role in capturing and stabilizing isolated Zn atoms, the feasibility of this novel strategy is demonstrated through a comprehensive investigation, combining experimental and theoretical studies. Furthermore, when studied in exploring for potential applications, the material prepared shows a remarkable improvement of 58.21% for the Li+ storage and delivers a capacity over 300 Wh kg-1 after 500 cycles upon the transformation of Zn clusters into single atoms.

16.
Crit Rev Immunol ; 44(5): 113-122, 2024.
Article in English | MEDLINE | ID: mdl-38618733

ABSTRACT

Pneumonia is a common infection in elderly patients. We explored the correlations of serum interleukin-6 (IL-6) and serum ferritin (SF) levels with immune function/disease severity in elderly pneumonia patients. Subjects were allocated into the mild pneumonia (MP), severe pneumonia (SP), and normal groups, with their age/sex/body mass index/ disease course and severity/blood pressure/comorbidities/medications/prealbumin (PA)/albumin (ALB)/C-reactive protein (CRP)/procalcitonin (PCT)/smoking status documented. The disease severity was evaluated by pneumonia severity index (PSI). T helper 17 (Th17)/regulatory T (Treg) cell ratios and IL-6/SF/immunoglobulin G (IgG)/Th17 cytokine (IL-21)/Treg cytokine (IL-10)/PA/ALB levels were assessed. The correlations between these indexes/independent risk factors in elderly patients with severe pneumonia were evaluated. There were differences in smoking and CRP/PCT/ALB/PA levels among the three groups, but only CRP/ALB were different between the MP/SP groups. Pneumonia patients exhibited up-regulated Th17 cell ratio and serum IL-6/SF/IL-21/IL-10/IgG levels, down-regulated Treg cell ratio, and greater differences were noted in severe cases. Serum IL-6/SF levels were positively correlated with disease severity, immune function, and IL-21/IL-10/IgG levels. Collectively, serum IL-6 and SF levels in elderly pneumonia patients were conspicuously positively correlated with disease severity and IL-21/IL-10/IgG levels. CRP, ALB, IL-6 and SF levels were independent risk factors for severe pneumonia in elderly patients.


Subject(s)
Interleukin-10 , Interleukin-6 , Aged , Humans , Cytokines , Ferritins , Immunoglobulin G , Risk Factors
17.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38675488

ABSTRACT

Monoclonal antibodies require careful formulation due to their inherent stability limitations. Polysorbates are commonly used to stabilize mAbs, but they are prone to degradation, which results in unwanted impurities. KLEPTOSE® HPßCD (hydroxypropyl beta-cyclodextrin) has functioned as a stable stabilizer for protein formulations in our previous research. The current study investigates the collaborative impact of combining polysorbates and HPßCD as excipients in protein formulations. The introduction of HPßCD in formulations showed it considerably reduced aggregation in two model proteins, bevacizumab and ipilimumab, following exposure to various stress conditions. The diffusion interaction parameter revealed a reduction in protein-protein interactions by HPßCD. In bevacizumab formulations, the subvisible particle counts per 0.4 mL of samples in commercial formulations vs. formulations containing both HPßCD and polysorbates subjected to distinct stressors were as follows: agitation, 87,308 particles vs. 15,350 particles; light, 25,492 particles vs. 6765 particles; and heat, 1775 particles vs. 460 particles. Isothermal titration calorimetry (ITC) measurement indicated a weak interaction between PS 80 and HPßCD, with a KD value of 74.7 ± 7.5 µM and binding sites of 5 × 10-3. Surface tension measurements illustrated that HPßCD enhanced the surface activity of polysorbates. The study suggests that combining these excipients can improve mAb stability in formulations, offering an alternative for the biopharmaceutical industry.

18.
Molecules ; 29(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675540

ABSTRACT

Piezocatalysis, a heterogeneous catalytic technique, leverages the periodic electric field changes generated by piezoelectric materials under external forces to drive carriers for the advanced oxidation of organic pollutants. Antibiotics, as emerging trace organic pollutants in water sources, pose a potential threat to animals and drinking water safety. Thus, piezoelectric catalysis can be used to degrade trace organic pollutants in water. In this work, BaTiO3 and La-doped BaTiO3 were synthesized using an improved sol-gel-hydrothermal method and used as piezocatalytic materials to degrade sulfadiazine (SDZ) with ultrasound activation. High-crystallinity products with nano cubic and spherical morphologies were successfully synthesized. An initial concentration of SDZ ranging from 1 to 10 mg/L, a catalysis dosage range from 1 to 2.5 mg/mL, pH, and the background ions in the water were considered as influencing factors and tested. The reaction rate constant was 0.0378 min-1 under the optimum working conditions, and the degradation efficiency achieved was 89.06% in 60 min. La-doped BaTiO3 had a better degradation efficiency, at 14.98% on average, compared to undoped BaTiO3. Further investigations into scavengers revealed a partially piezocatalytic process for the degradation of SDZ. In summary, our work provides an idea for green environmental protection in dealing with new types of environmental pollution.

19.
Molecules ; 29(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38611795

ABSTRACT

Heterogeneous photocatalysis-self-Fenton technology is a sustainable strategy for treating organic pollutants in actual water bodies with high-fluent degradation and high mineralization capacity, overcoming the limitations of the safety risks caused by adding external iron sources and hazardous chemicals in the homogeneous Fenton reaction and injecting high-intensity energy fields in photo-Fenton reaction. Herein, a photo-self-Fenton system based on resorcinol-formaldehyde (RF) resin and red mud (RM) was established to generate hydrogen peroxide (H2O2) in situ and transform into hydroxy radical (•OH) for efficient degradation of tetracycline (TC) under visible light irradiation. The capturing experiments and electron spin resonance (ESR) confirmed that the hinge for the enhanced performance of this system is the superior H2O2 yield (499 µM) through the oxygen reduction process (ORR) of the two-step single-electron over the resin and the high concentration of •OH due to activation effect of RM. In addition, the Fe2+/Fe3+ cycles are accelerated by photoelectrons to effectively initiate the photo-self-Fenton reaction. Finally, the possible degradation pathways were proposed via liquid chromatography-mass spectrometry (LC-MS). This study provides a new idea for environmental recovery in a waste-based heterogeneous photocatalytic self-Fenton system.

20.
J Biomed Sci ; 31(1): 38, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38627765

ABSTRACT

BACKGROUND: Mitochondria are essential organelles involved in cellular energy production. Changes in mitochondrial function can lead to dysfunction and cell death in aging and age-related disorders. Recent research suggests that mitochondrial dysfunction is closely linked to neurodegenerative diseases. Glucagon-like peptide-1 receptor (GLP-1R) agonist has gained interest as a potential treatment for Parkinson's disease (PD). However, the exact mechanisms responsible for the therapeutic effects of GLP-1R-related agonists are not yet fully understood. METHODS: In this study, we explores the effects of early treatment with PT320, a sustained release formulation of the GLP-1R agonist Exenatide, on mitochondrial functions and morphology in a progressive PD mouse model, the MitoPark (MP) mouse. RESULTS: Our findings demonstrate that administration of a clinically translatable dose of PT320 ameliorates the reduction in tyrosine hydroxylase expression, lowers reactive oxygen species (ROS) levels, and inhibits mitochondrial cytochrome c release during nigrostriatal dopaminergic denervation in MP mice. PT320 treatment significantly preserved mitochondrial function and morphology but did not influence the reduction in mitochondria numbers during PD progression in MP mice. Genetic analysis indicated that the cytoprotective effect of PT320 is attributed to a reduction in the expression of mitochondrial fission protein 1 (Fis1) and an increase in the expression of optic atrophy type 1 (Opa1), which is known to play a role in maintaining mitochondrial homeostasis and decreasing cytochrome c release through remodeling of the cristae. CONCLUSION: Our findings suggest that the early administration of PT320 shows potential as a neuroprotective treatment for PD, as it can preserve mitochondrial function. Through enhancing mitochondrial health by regulating Opa1 and Fis1, PT320 presents a new neuroprotective therapy in PD.


Subject(s)
Mitochondrial Diseases , Parkinson Disease , Mice , Animals , Dopamine/metabolism , Cytochromes c/metabolism , Cytochromes c/pharmacology , Cytochromes c/therapeutic use , Parkinson Disease/genetics , Mitochondria , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/metabolism , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...