Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Nanomaterials (Basel) ; 14(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38786782

ABSTRACT

Binary transition metal oxide complexes (BTMOCs) in three-dimensional (3D) layered structures show great promise as electrodes for supercapacitors (SCs) due to their diverse oxidation states, which contribute to high specific capacitance. However, the synthesis of BTMOCs with 3D structures remains challenging yet crucial for their application. In this study, we present a novel approach utilizing a single-step hydrothermal technique to fabricate flower-shaped microspheres composed of a NiCo-based complex. Each microsphere consists of nanosheets with a mesoporous structure, enhancing the specific surface area to 23.66 m2 g-1 and facilitating efficient redox reactions. When employed as the working electrode for supercapacitors, the composite exhibits remarkable specific capacitance, achieving 888.8 F g-1 at 1 A g-1. Furthermore, it demonstrates notable electrochemical stability, retaining 52.08% capacitance after 10,000 cycles, and offers a high-power density of 225 W·kg-1, along with an energy density of 25 Wh·kg-1, showcasing its potential for energy storage applications. Additionally, an aqueous asymmetric supercapacitor (ASC) was assembled using NiCo microspheres-based complex and activated carbon (AC). Remarkably, the NiCo microspheres complex/AC configuration delivers a high specific capacitance of 250 F g-1 at 1 A g-1, with a high energy density of 88 Wh kg-1, for a power density of 800 W kg-1. The ASC also exhibits excellent long-term cyclability with 69% retention over 10,000 charge-discharge cycles. Furthermore, a series of two ASC devices demonstrated the capability to power commercial blue LEDs for a duration of at least 40 s. The simplicity of the synthesis process and the exceptional performance exhibited by the developed electrode materials hold considerable promise for applications in energy storage.

2.
Acta Pharmacol Sin ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760545

ABSTRACT

Tacrolimus, one of the macrolide calcineurin inhibitors, is the most frequently used immunosuppressant after transplantation. Long-term administration of tacrolimus leads to dyslipidemia and affects liver lipid metabolism. In this study, we investigated the mode of action and underlying mechanisms of this adverse reaction. Mice were administered tacrolimus (2.5 mg·kg-1·d-1, i.g.) for 10 weeks, then euthanized; the blood samples and liver tissues were collected for analyses. We showed that tacrolimus administration induced significant dyslipidemia and lipid deposition in mouse liver. Dyslipidemia was also observed in heart or kidney transplantation patients treated with tacrolimus. We demonstrated that tacrolimus did not directly induce de novo synthesis of fatty acids, but markedly decreased fatty acid oxidation (FAO) in AML12 cells. Furthermore, we showed that tacrolimus dramatically decreased the expression of HMGCS2, the rate-limiting enzyme of ketogenesis, with decreased ketogenesis in AML12 cells, which was responsible for lipid deposition in normal hepatocytes. Moreover, we revealed that tacrolimus inhibited forkhead box protein O1 (FoxO1) nuclear translocation by promoting FKBP51-FoxO1 complex formation, thus reducing FoxO1 binding to the HMGCS2 promoter and its transcription ability in AML12 cells. The loss of HMGCS2 induced by tacrolimus caused decreased ketogenesis and increased acetyl-CoA accumulation, which promoted mitochondrial protein acetylation, thereby resulting in FAO function inhibition. Liver-specific HMGCS2 overexpression via tail intravenous injection of AAV8-TBG-HMGCS2 construct reversed tacrolimus-induced mitochondrial protein acetylation and FAO inhibition, thus removing the lipid deposition in hepatocytes. Collectively, this study demonstrates a novel mechanism of liver lipid deposition and hyperlipidemia induced by long-term administration of tacrolimus, resulted from the loss of HMGCS2-mediated ketogenesis and subsequent FAO inhibition, providing an alternative target for reversing tacrolimus-induced adverse reaction.

3.
ChemSusChem ; : e202400359, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687195

ABSTRACT

The escalating focus on environmental concerns and the swift advancement of eco-friendly biodegradable batteries raises a pressing demand for enhanced material design in the battery field. The traditional polypropylene (PP) that is monopolistically utilized in the commercial LIBs is hard to recycle. In this work, we prepare a novel water degradable separators via the cross-linking of polyvinyl alcohol (PVA) and dibasic acid (tartaric acid, TA). Through the integration of non-solvent liquid-phase separation, we successfully produced a thermally stable PVA-TA membrane with tunable thickness and a high level of porosity. These specially engineered PVA-TA separators were implemented in LiFePO4 (LFP)|separator|Li cells, resulting in superior multiplicative performance and achieving a capacity of 88 mAh g-1 under 5 C. Additionally, the straightforward small molecule cross-linking technique significantly reduced the crystalline region of the polymer, thereby enhancing ionic conductivity. Notably, after cycling, the PVA-TA separators can be easily dissolved in 95 °C hot water, enabling its reutilization for the production of new PVA-TA separators. Therefore, this work introduces a novel concept to design green and sustainable separators for recyclable lithium batteries.

4.
Angew Chem Int Ed Engl ; : e202400144, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38624087

ABSTRACT

Li-rich antiperovskite (LiRAP) hydroxyhalides are emerging as attractive solid electrolyte (SEs) for all-solid-state Li metal batteries (ASSLMBs) due to their low melting point, low cost, and ease of scaling-up. The incorporation of rotational polyanions can reduce the activation energy and thus improve the Li ion conductivity of SEs. Herein, we propose a ternary rotational polyanion coupling strategy to fasten the Li ion conduction in tetrafluoroborate (BF4-) ion doped LiRAP Li2OHCl. Assisted by first-principles calculation, powder X-ray diffraction, solid-state magnetic resonance and electrochemical impedance spectra, it is confirmed that Li ion transport in BF4- ion doped Li2OHCl is strongly associated with the rotational coupling among OH-, BF4- and Li2-O-H octahedrons, which enhances the Li ion conductivity for more than 1.8 times with the activation energy lowering 0.03 eV. This work provides a new perspective to design high-performance superionic conductors with multi-polyanions.

5.
Nano Lett ; 24(7): 2360-2368, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38347661

ABSTRACT

Accurate and sensitive analysis of circulating tumor cells (CTCs) in human blood provides a non-invasive approach for the evaluation of cancer metastasis and early cancer diagnosis. Herein, we demonstrate the controllable assembly of a quantum dot (QD)-based aptasensor guided by CRISPR/Cas12a for direct measurement of CTCs in human blood. We introduce a magnetic bead@activator/recognizer duplex core-shell structure to construct a multifunctional platform for the capture and direct detection of CTCs in human blood, without the need for additional CTC release and re-identification steps. Notably, the introduction of magnetic separation ensures that only a target-induced free activator can initiate the downstream catalysis, efficiently avoiding the undesired catalysis triggered by inappropriate recognition of the activator/recognizer duplex structure by crRNAs. This aptasensor achieves high CTC-capture efficiency (82.72%) and sensitive detection of CTCs with a limit of detection of 2 cells mL-1 in human blood, holding great promise for the liquid biopsy of cancers.


Subject(s)
Neoplastic Cells, Circulating , Quantum Dots , Humans , Neoplastic Cells, Circulating/pathology , Quantum Dots/chemistry , CRISPR-Cas Systems/genetics , Liquid Biopsy
6.
Mol Neurobiol ; 61(3): 1726-1736, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37775718

ABSTRACT

The deubiquitylase OTU domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) has been implicated in the pathogenesis of various human diseases. However, the molecular mechanism by which OTUB1 participates in the pathogenesis of intracerebral hemorrhage (ICH) remains elusive. In the present study, we established an autologous whole blood fusion-induced ICH model in C57BL/6 J mice. We showed that the upregulation of OTUB1 contributes to the attenuation of Nuclear factor kappa B (NF-κB) and its downstream apoptotic signaling after ICH. OTUB1 directly associates with NF-κB precursors p105 and p100 after ICH, leading to attenuated polyubiquitylation of p105 and p100. Moreover, we revealed that NF-κB signaling was modestly activated both in ICH tissues and hemin-exposed HT-22 neuronal cells, accompanied with the activation of NF-κB downstream pro-apoptotic signaling. Notably, overexpression of OTUB1 strongly inhibited hemin-induced NF-κB activation, whereas interference of OTUB1 led to the opposite effect. Finally, we revealed that lentiviral transduction of OTUB1 markedly ameliorated hemin-induced apoptotic signaling and HT-22 neuronal death. Collectively, these findings suggest that the upregulation of OTUB1 serves as a neuroprotective mechanism in antagonizing neuroinflammation-induced NF-κB signaling and neuronal death, shed new light on manipulating intracellular deubiquitylating pathways as novel interventive approaches against ICH-induced secondary neuronal damage and death.


Subject(s)
Hemin , NF-kappa B , Animals , Humans , Mice , Cerebral Hemorrhage/pathology , Hemin/pharmacology , Mice, Inbred C57BL , NF-kappa B/metabolism , Signal Transduction
7.
Biosens Bioelectron ; 247: 115966, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38147719

ABSTRACT

Methylation is one of the most prevalent epigenetic modifications in natural organisms, and the processes of methylation and demethylation are closely associated with cell growth, differentiation, gene transcription and expression. Abnormal methylation may lead to various human diseases including cancers. Simultaneous analysis of multiple DNA demethylases remains a huge challenge due to the requirement of diverse substrate probes and scarcity of proper signal transduction strategies. Herein, we propose a sensitive and label-free method for simultaneous monitoring of multiple DNA demethylases on the basis of demethylation-activated light-up dual-color RNA aptamers. The presence of targets AlkB homologue-3 (ALKBH3) and fat mass and obesity-associated enzyme (FTO) erases the methyl group in DNA substrate probes, activating the ligation-mediate bidirectional transcription amplification reaction to produce enormous Spinach and Mango aptamers. The resulting RNA aptamers (i.e., Spinach and Mango aptamers) can bind with their cognate nonfluorescent fluorogens (DFHBI and TO1-biotin) to significantly improve the fluorescence signals. This aptamersensor shows high specificity and sensitivity with a limit of detection (LOD) of 8.50 × 10-14 M for ALKBH3 and 6.80 × 10-14 M for FTO, and it can apply to screen DNA demethylase inhibitors, evaluate DNA demethylase kinetic parameters, and simultaneously measure multiple endogenous DNA demethylases in a single cell. Importantly, this aptamersensor can accurately discriminate the expressions of ALKBH3 and FTO between healthy tissues and non-small cell lung cancer (NSCLC) patient tissues, offering a powerful platform for clinical diagnosis and drug discovery.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , RNA/chemistry , Aptamers, Nucleotide/metabolism , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , DNA/metabolism , Demethylation , Lung/metabolism , AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/chemistry , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
8.
Adv Sci (Weinh) ; 10(36): e2305414, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37875394

ABSTRACT

Although hard carbon (HC) demonstrates superior initial Coulombic efficiency, cycling durability, and rate capability in ether-based electrolytes compared to ester-based electrolytes for sodium-ion batteries (SIBs), the underlying mechanisms responsible for these disparities remain largely unexplored. Herein, ex situ electron paramagnetic resonance (EPR) spectra and in situ Raman spectroscopy are combined to investigate the Na storage mechanism of HC under different electrolytes. Through deconvolving the EPR signals of Na in HC, quasi-metallic-Na is successfully differentiated from adsorbed-Na. By monitoring the evolution of different Na species during the charging/discharging process, it is found that the initial adsorbed-Na in HC with ether-based electrolytes can be effectively transformed into intercalated-Na in the plateau region. However, this transformation is obstructed in ester-based electrolytes, leading to the predominant storage of Na in HC as adsorbed-Na and pore-filled-Na. Furthermore, the intercalated-Na in HC within the ether-based electrolytes contributes to the formation of a uniform, dense, and stable solid-electrolyte interphase (SEI) film and eventually enhances the electrochemical performance of HC. This work successfully deciphers the electrolyte-dominated Na+ storage mechanisms in HC and provides fundamental insights into the industrialization of HC in SIBs.

9.
Sci Total Environ ; 891: 164221, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37263432

ABSTRACT

Cellular motility is crucial for effective colonization of the rhizosphere, but it is not yet clear whether bacterial motility is particularly linked to other genetic traits. Here, we applied genome-resolved metagenomics and phylogenomics to investigate the ecological significance of cellular motility for niche differentiation and the links between the genetic makeup of motile bacteria and rhizosphere colonization within a four-decade maize field experiment. Indeed, highly diverse sets of genes encoding cellular motility, including chemotaxis, flagellar assembly and motility proteins, and utilization of polymeric carbon were the important predictors of bacterial niche differentiation between bulk and rhizosphere soils. This is well exemplified by metagenome-assembled genomes encoding high motility capacity (hmc_MAGs). Their collective abundance was, on average, sixfold higher in rhizosphere soil than in bulk soil. All bulk-soil-derived MAGs showed low motility capacities (lmc). The hmc_MAGs were highly enriched in beneficial traits involved in carbohydrate utilization, assimilatory (nasA) and dissimilatory (nirBD) nitrate reduction, inorganic phosphate solubilization (gcd), and organic phosphate mineralization (phoD). Belonging to the families Sphingomonadaceae, Burkholderiaceae and Steroidobacteraceae, the hmc_MAGs showed a ninefold greater enrichment in these traits than proteobacterial lmc_MAGs and a twofold greater enrichment than 264 genomes publicly available for the above three families, thereby substantiating that a specific rhizosphere effect acted on the microbes represented by the hmc_MAGs. The particular link between the genetic capacities for high cellular motility and increased carbohydrate depolymerization as the key determinant for plant-selected rhizosphere colonization was further substantiated by the analysis of public bulk-rhizosphere soil metagenomes retrieved from wheat and cucumber field sites.


Subject(s)
Metagenome , Soil , Humans , Rhizosphere , Metagenomics , Soil Microbiology , Bacteria/metabolism , Carbohydrates
10.
ACS Appl Mater Interfaces ; 15(26): 31478-31490, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37357370

ABSTRACT

Based on the different dielectric properties of materials and the selective heating property of microwaves, the ultrafast (30 s) preparation of S-NiS2@SP@Bitu as a cathode material for lithium-sulfur batteries was achieved using bitumen, sulfur, Super P, and nickel naphthenate as raw materials for the first time, under microwave treatment. NiS2@SP@Bitu forms Li-N, Li-O, Li-S, and Ni-S bonds with polysulfide, which contributes to promoting the adsorption of polysulfide, reducing the precipitation and decomposition energy barrier of Li2S, and accelerating the catalytic conversion of polysulfide, as result of inhibiting the "shuttle effect" and improving the electrochemical performance. S-NiS2@SP@Bitu as the sulfur cathode material demonstrates outstanding rate performance (518.6 mAh g-1 at 4C), and stable cycling performance. The lithium-sulfur battery with a sulfur loading of 4.8 mg cm-2 shows an areal capacity of 4.6 mAh cm-2. Based on the advantages of microwave selective and rapid heating, this method creatively realized that the sulfur carrier material was prepared and sulfur was fixed in it at the same time. Therefore, this method would have implications for the preparation of sulfur cathode materials.

11.
J Colloid Interface Sci ; 646: 900-909, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37235935

ABSTRACT

Metal macrocycles with well-defined molecular structures are ideal platforms for the in-depth study of electrochemical oxygen reduction reaction (ORR). Structural integrity of metal macrocycles is vital but remain challenging since the commonly used high-temperature pyrolysis would cause severe structure damage and unidentifiable active sites. Herein, we propose a pyrolysis-free strategy to precisely manipulate the exfoliated 2D iron polyphthalocyanine (FePPc) anchored on reduced graphene oxide (rGO) via π-π stacking using facile high-energy ball milling. A delocalized electron shift caused by π-π interaction is firstly found to be the mechanism of facilitating the remarkable ORR activity of this hybrid catalyst. The optimal FePPc@rGO-HE achieves superior half-wave potential (0.90 V) than 20 % Pt/C. This study offers a new insight in designing stable and high-performance metal macrocycle catalysts with well-defined active sites.

12.
Clin Immunol ; 250: 109319, 2023 05.
Article in English | MEDLINE | ID: mdl-37024024

ABSTRACT

Pancreatic sympathetic innervation can directly affect the function of islet. The disorder of sympathetic innervation in islets during the occurrence of type 1 diabetes (T1D) has been reported to be controversial with the inducing factor unclarified. Several studies have uncovered the critical role that sympathetic signals play in controlling the local immune system. The survival and function of endocrine cells can be regulated by immune cell infiltration in islets. In the current review, we focused on the impact of sympathetic signals working on islets cell regulation, and discussed the potential factors that can induce the sympathetic innervation disorder in the islets. We also summarized the effect of interference with the islet sympathetic signals on the T1D occurrence. Overall, a comprehensive understanding of the regulatory effect of sympathetic signals on islet cells and local immune system could facilitate better strategies design to control inflammation and protect ß cells in T1D therapy.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Islets of Langerhans , Humans , Insulin
13.
Oncoimmunology ; 12(1): 2204015, 2023.
Article in English | MEDLINE | ID: mdl-37089447

ABSTRACT

Pancreatic cancer (PC) is featured with low survival rate and poor outcomes. Herein, we found that the expression of caspase-recruitment domain-containing protein 9 (CARD9), predominantly expressed in innate immune cells, was positively related to the prognosis of PC patients. CARD9-deficient PC mice exhibited rapider cancer progression and poorer survival rate. CARD9 knockout decreased dendritic cell (DC) maturation and impaired DC ability to activate T cells in vivo and in vitro. Adoptive DC transfer confirmed that the role of CARD9 deficiency in PC relied on DCs. Creatine was identified as the most significant differential metabolite between WT DCs and CARD9-/- DCs wherein it played an essential role in maintaining DC maturation and function. CARD9 deficiency led to decreased creatine levels in DCs by inhibiting the transcription of the creatine-specific transporter, solute carrier family 6 member 8 (SLC6A8). Furtherly, CARD9 deletion blocked p65 activation by abolishing the formation of CARD9-BCL10-MALT1 complex, which prevented the binding between p65 and SLC6A8 promoter. These events decreased the creatine transport into DCs, and led to DC immaturity and impairment in antitumor immunity, consequently promoting PC progression.


Subject(s)
Pancreatic Neoplasms , Signal Transduction , Animals , Mice , Creatine/metabolism , Pancreatic Neoplasms/genetics , Dendritic Cells , CARD Signaling Adaptor Proteins/metabolism
14.
Clin Immunol ; 248: 109217, 2023 03.
Article in English | MEDLINE | ID: mdl-36581220

ABSTRACT

Cold tumor immune microenvironment (TIME) of pancreatic cancer (PC) with minimal dendritic cell (DC) and T cell infiltration can result in insufficient immunotherapy and chemotherapy. While gemcitabine (GEM) is a first-line chemotherapeutic drug for PC, its efficacy is reduced by immunosuppression and drug resistance. Ginsenoside Rh2 (Rh2) is known to have anti-cancer and immunomodulatory properties. Combining GEM with Rh2 may thus overcome immunosuppression and induce lasting anti-tumor immunity in PC. Here, we showed that after GEM-Rh2 therapy, there was significantly greater tumor infiltration by DCs. Caspase recruitment domain-containing protein 9 (CARD9), a central adaptor protein, was strongly up-regulated DCs with GEM-Rh2 therapy and promoted anti-tumor immune responses by DCs. CARD9 was found to be a critical target for Rh2 to enhance DC function. However, GEM-Rh2 treatment did not achieve the substantial anti-PC efficacy in CARD9-/- mice as in WT mice. The adoptive transfer of WT DCs to DC-depleted PC mice treated with GEM-Rh2 elicited strong anti-tumor immune responses, although CARD9-/- DCs were less effective than WT DCs. Our results showed that GEM-Rh2 may reverse cold TIME by enhancing tumor immunogenicity and decreasing the levels of immunosuppressive factors, reactivating DCs via the CARD9-BCL10-MALT1/ NF-κB pathway. Our findings suggest a potentially feasible and safe treatment strategy for PC, with a unique mechanism of action. Thus, Rh2 activation of DCs may remodel the cold TIME and optimize GEM chemotherapy for future therapeutic use.


Subject(s)
NF-kappa B , Pancreatic Neoplasms , Animals , Mice , NF-kappa B/metabolism , Gemcitabine , Immunity , Dendritic Cells , Cell Line, Tumor , Tumor Microenvironment , B-Cell CLL-Lymphoma 10 Protein , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , CARD Signaling Adaptor Proteins/metabolism , Pancreatic Neoplasms
15.
Front Pharmacol ; 13: 966279, 2022.
Article in English | MEDLINE | ID: mdl-36267291

ABSTRACT

Background: Numerous clinical studies have shown that atopic dermatitis (AD) is often associated with mental disorders. This could contribute to the overall burden of atopic dermatitis. However, the underlying mechanism of mental health symptoms in AD has not been fully elucidated. Methods: An AD mouse was induced by 2,4-dinitrofluorobenzene (DNFB), which was repeatedly applied to the back skin of the BALB/C mice to establish an atopic dermatitis mental disorder model. The role of neuroinflammation in the pathogenesis of atopic dermatitis mental disorders was then explored. Results: After the stimulation of DNFB for 35 days, the skin lesions, the HE staining of skin lesions, and the behavioral experiments (including elevated plus maze assay and tail suspension test) suggested that the AD mental disorder mouse model was successfully replicated. The expression of neuroinflammatory factors in the hippocampus was then investigated through Western blotting. The results showed a significant increase in the protein expression of NLRP3, caspase-1, and IL-1ß. Conclusion: Mental disorders in AD might be related to the neuroinflammatory response in the hippocampus. An alternative yet essential approach to promoting AD recovery could be through reducing neuroinflammation and improving mental disorders.

16.
Small ; 18(46): e2204707, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36193958

ABSTRACT

Boosting reversible solid-liquid phase transformation from lithium polysulfides to Li2 S and suppressing the shuttling of lithium polysulfides from the cathode to the lithium anode are critical challenges in lithium-sulfur batteries. Here, sulfiphilic single atomic cobalt implanted in lithiophilic heteroatoms-dopped carbon (SACo@HC) matrix with a CoN3 S structure for high-performance lithium-sulfur batteries is reported. Density functional theory calculation and in situ experiments demonstrate that the optimal CoN3 S structure in SACo@HC can effectively improve the adsorption and redox conversion efficiency of lithium polysulfides. Consequently, the S-SACo@HC composite with sulfur loading of 80 wt% delivers a high capacity of 1425.1 mAh g-1 at 0.05 C and outstanding rate performance with 745.9 mAh g-1 at 4 C. Furthermore, a capacity of 680.8 mAh g-1 at 0.5 C with a low electrolyte/sulfur ratio (6 µL mg-1 ) can be achieved even after 300 cycles. With the harsh conditions of lean electrolyte (E/S = 4 µL mg-1 ) and high sulfur loading (5.4 mg cm-2 ), a superior area capacity of 5.8 mAh cm-2 can be obtained. This work contributes to building a profound understanding of the adsorption and interface engineering of lithium polysulfides and provides ideas to tackle the long-standing polysulfide shuttle problem of lithium-sulfur batteries.

17.
ACS Appl Mater Interfaces ; 14(39): 44330-44337, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36125517

ABSTRACT

Organic electrode materials have the typical advantages of flexibility, low cost, abundant resources, and recyclability. However, it is challenging to simultaneously optimize the specific capacity, rate capability, and cycling stability. Radicals are inevitable intermediates that critically determine the redox activity and stability during the electrochemical reaction of organic electrodes. Herein, we select a series of aromatic imides, including pyromellitic diimide (PMDI), 1,4,5,8-naphthalenediimide (NDI), and 3,4,9,10-perylenetetracarboxylicdiimide (PTCDI), which contain different extending π-conjugated aromatic rings, to study the relationship between their electrochemical performance and the size of the aromatic ring. The results show that regulating the aromatic ring size of imide molecules could finely tune the energies of the lowest unoccupied molecular orbital (LUMO), thus optimizing the redox potential. The rate performance of PMDI, NDI, and PTCDI increases with the aromatic ring size, which is consistent with the decrease in the LUMO-HOMO gap of these imide molecules. DFT calculations and experiments reveal that the redox of imide radicals dominates the charge/discharge processes. Also, extending the aromatic rings could more effectively disperse the spin electron density and improve the stability of imide radicals, contributing to the enhanced cycling stability of these imide electrodes. Hence, aromatic ring size regulation is a simple and novel approach to simultaneously enhance the capacity, rate capability, and cycling stability of organic electrodes for high-performance lithium-ion batteries.

18.
Anal Chem ; 94(27): 9785-9792, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35749235

ABSTRACT

5-Hydroxymethylcytosine (5hmC) modification is a key epigenetic regulator of cellular processes in mammalian cells, and its misregulation may lead to various diseases. Herein, we develop a hydroxymethylation-specific ligation-mediated single quantum dot (QD)-based fluorescence resonance energy transfer (FRET) nanosensor for sensitive quantification of 5hmC modification in cancer cells. We design a Cy5-modified signal probe and a biotinylated capture probe for the recognition of specific 5hmC-containing genes. 5hmC in target DNA can be selectively converted by T4 ß-glucosyltransferase to produce a glycosyl-modified 5hmC, which cannot be cleaved by methylation-insensitive restriction enzyme MspI. The glycosylated 5hmC DNA may act as a template to ligate a signal probe and a capture probe, initiating hydroxymethylation-specific ligation to generate large amounts of biotin-/Cy5-modified single-stranded DNAs (ssDNAs). The assembly of biotin-/Cy5-modified ssDNAs onto a single QD through streptavidin-biotin interaction results in FRET and consequently the generation of a Cy5 signal. The nanosensor is very simple without the need for bisulfite treatment, radioactive reagents, and 5hmC-specific antibodies. Owing to excellent specificity and high amplification efficiency of hydroxymethylation-specific ligation and near-zero background of a single QD-based FRET, this nanosensor can quantify 5hmC DNA with a limit of detection of 33.61 aM and a wider linear range of 7 orders of magnitude, and it may discriminate the single-nucleotide difference among 5hmC, 5-methylcytosine, and unmodified cytosine. Moreover, this nanosensor can distinguish as low as a 0.001% 5hmC DNA in complex mixtures, and it can monitor the cellular 5hmC level and discriminate cancer cells from normal cells, holding great potential in biomedical research and clinical diagnostics.


Subject(s)
Neoplasms , Quantum Dots , 5-Methylcytosine/analogs & derivatives , Animals , Biotin/genetics , DNA/genetics , DNA Methylation , Mammals , Neoplasms/genetics
19.
IET Syst Biol ; 16(3-4): 132-143, 2022 05.
Article in English | MEDLINE | ID: mdl-35761476

ABSTRACT

Acute paraquat poisoning is due to the extremely severe toxicity of paraquat. After paraquat enters the human body, it will cause rapid changes in the human body system. Since paraquat poisoning will quickly invade the organs of the whole body, it may cause damage to the functions of multiple organs in the poisoned patient. The liver organ is the most important detoxification site for the human body, so the damage to the liver of the patient is more obvious. This article discovers and observes the structure of paraquat and the dynamic changes of serum cytokines in patients with paraquat poisoning through the clinical phenomenon of paraquat poisoning, and the related changes of human serum cells after the subjects took paraquat and the changes of cell dynamic factors after different doses of paraquat entered the human body were analysed. At the same time, the changes in the immune function of the body of different groups of people were also observed. The experimental results in this article show that according to the intake of paraquat, the severity of poisoning patients will be mild, moderate, severe and outbreak poisoning. Among them, the dose for adults who cannot be treated for prognosis is 10 ml.


Subject(s)
Cytokines , Paraquat , Adult , Humans , Immunity
20.
Appl Bionics Biomech ; 2022: 9368920, 2022.
Article in English | MEDLINE | ID: mdl-35251304

ABSTRACT

Effective triage tools are indispensable for doctors to make a prompt decision for the treatment of multiple trauma patients in emergency departments (EDs). The Modified Early Warning Score (MEWS), National Early Warning Score (NEWS), standardized early warning score (SEWS), Modified Rapid Emergency Medicine Score (mREMS), and Revised Trauma Score (RTS) are five common triage tools proposed for trauma management. However, few studies have compared these tools in a multiple trauma cohort and investigated the influence of nighttime admission on the performance of these tools. This retrospective study was aimed at evaluating and comparing the performance of MEWS, NEWS, SEWS, mREMS, and RTS for identifying the mortality risk and trauma severity of patients with multiple trauma admitted to the ED during the daytime and nighttime. Retrospective data were collected from the medical records of patients with multiple trauma admitted in the daytime or nighttime to calculate scores for each triage tool. Logistic regression analysis was conducted on each triage tool for identifying in-hospital mortality and severe trauma (injury severity score > 15) in the daytime and nighttime. The performance of the tools was evaluated and compared by calculating area under the receiver operating characteristic curve (AUROC) of the retrospective logistic model of each tool. We collected data for 1,818 admissions, including 1,070 daytime and 748 nighttime admissions. A comparison of performance for identifying in-hospital mortality between daytime and nighttime yielded the following results (AUROC): MEWS (0.95 vs. 0.93, p = 0.384), NEWS (0.95 vs. 0.94, p = 0.708), SEWS (0.95 vs. 0.94, p = 0.683), mREMS (0.94 vs. 0.92, p = 0.286), and RTS (0.93 vs. 0.93, p = 0.87). Similarly, a comparison of performance for identifying trauma severity between daytime and nighttime yielded the following results (AUROC): MEWS (0.78 vs. 0.78, p = 0.95), NEWS (0.8 vs. 0.8, p = 0.885), SEWS (0.78 vs. 0.78, p = 0.818), mREMS (0.75 vs. 0.69, p = 0.019), and RTS (0.75 vs. 0.74, p = 0.619). All five scores are excellent triage tools (AUROC ≥ 0.9) for identifying in-hospital mortality for both daytime and nighttime admissions. However, they have only moderate effectiveness (AUROC < 0.9) at identifying severe trauma. The NEWS is the best triage tool for identifying severe trauma for both daytime and nighttime admissions. The MEWS, NEWS, SEWS, and RTS exhibited no significant differences in performance for identifying in-hospital mortality or severe trauma during the daytime or nighttime. However, the mREMS was better at identifying severe trauma during the daytime.

SELECTION OF CITATIONS
SEARCH DETAIL
...