Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.194
Filter
1.
bioRxiv ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38948706

ABSTRACT

Early diagnosis and biomarker discovery to bolster the therapeutic pipeline for Parkinson's disease (PD) are urgently needed. In this study, we leverage the large-scale whole-blood total RNA-seq dataset from the Accelerating Medicine Partnership in Parkinson's Disease (AMP PD) program to identify PD-associated RNAs, including both known genes and novel circular RNAs (circRNA) and enhancer RNAs (eRNAs). There were 1,111 significant marker RNAs, including 491 genes, 599 eRNAs, and 21 circRNAs, that were first discovered in the PPMI cohort (FDR < 0.05) and confirmed in the PDBP/BioFIND cohorts (nominal p < 0.05). Functional enrichment analysis showed that the PD-associated genes are involved in neutrophil activation and degranulation, as well as the TNF-alpha signaling pathway. We further compare the PD-associated genes in blood with those in post-mortem brain dopamine neurons in our BRAINcode cohort. 44 genes show significant changes with the same direction in both PD brain neurons and PD blood, including neuroinflammation-associated genes IKBIP, CXCR2, and NFKBIB. Finally, we built a novel multi-omics machine learning model to predict PD diagnosis with high performance (AUC = 0.89), which was superior to previous studies and might aid the decision-making for PD diagnosis in clinical practice. In summary, this study delineates a wide spectrum of the known and novel RNAs linked to PD and are detectable in circulating blood cells in a harmonized, large-scale dataset. It provides a generally useful computational framework for further biomarker development and early disease prediction.

2.
Heliyon ; 10(12): e33102, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39005919

ABSTRACT

Changji'an Formula (CJAF) is a Chinese herbal compound, which is effective against irritable bowel syndrome with predominant diarrhea (IBS-D) in clinic. However, the molecular mechanism has not been well defined. In the current study, the potential targets and signaling pathways of CJAF against IBS-D were predicted using network pharmacology analysis. The pharmacological mechanisms of CJAF against IBS-D and the potential mechanism were validated by using an IBS-D mouse model induced by enema with trinitrobenzene-sulfonic acid (TNBS) plus with restraint stress and further intervened with CJAF. A total of 232 active compounds of CJAF were obtained, a total of 397 potential targets for the active ingredients were retrieved and a total of 219 common targets were obtained as the potential targets of CJAF against IBS-D. GO and KEGG enrichment analyses showed that multiple targets were enriched and could be experimentally validated in a mouse model of IBS-D. The mechanisms were mainly converged on the immune and inflammatory pathways, especially the NF-κB, TNF and IL-17 signaling pathway, which were closely involved in the treatment of CJAF against IBS-D. Animal experiment showed that CJAF alleviated visceral hypersensitivity and diarrhea symptom of IBS-D. CJAF also restored the histological and ultrastructure damage of IBS-D. The result of Western blot showed that CJAF upregulated colonic tight junction proteins of ZO-1, Occludin and Claudin-1. Further results demonstrated that CJAF inhibited the protein expression of NF-κB/NLRP3 inflammasome pathway targets and downregulated proinflammatory mediators of IL-1ß, IL-18, TNF-α. In conclusion, CJAF could effectively reduce inflammatory response and alleviate visceral hypersensitivity as well as diarrhea symptom of IBS-D by inhibiting the NF-κB/NLRP3 signaling pathway. This study not only reveals the mechanism of CJAF against IBS-D, but also provides a novel therapeutic strategy for IBS-D.

3.
J Immunother ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980088

ABSTRACT

We evaluated the BYSL content and underlying mechanism in melanoma (SKCM) overall survival (OS). In this study, we used a comprehensive approach combining bioinformatics tools, including miRNA estimation, quantitative real-time polymerase chain reaction (qRT-PCR) of miRNAs, E3 ligase estimation, STRING analysis, TIMER analysis, examination of associated upstream modulators, protein-protein interaction (PPI) analysis, as well as retrospective and survival analyses, alongside clinical sample validation. These methods were used to investigate the content of BYSL, its methylation status, its relation to patient outcome, and its immunologic significance in tumors. Our findings revealed that BYSL expression is negatively regulated by BYSL methylation. Analysis of 468 cases of SKCM RNA sequencing samples demonstrated that enhanced BYSL expression was associated with higher tumor grade. We identified several miRNAs, namely hsa-miR-146b-3p, hsa-miR-342-3p, hsa-miR-511-5p, hsa-miR-3690, and hsa-miR-193a-5p, which showed a strong association with BYSL levels. Furthermore, we predicted the E3 ubiquitin ligase of BYSL and identified CBL, FBXW7, FZR1, KLHL3, and MARCH1 as potential modulators of BYSL. Through our investigation, we discovered that PNO1, RIOK2, TSR1, WDR3, and NOB1 proteins were strongly associated with BYSL expression. In addition, we found a close association between BYSL levels and certain immune cells, particularly dendritic cells (DCs). Notably, we observed a significant negative correlation between miR-146b-3p and BYSL mRNA expression in SKCM sera samples. Collectively, based on the previously shown evidences, BYSL can serve as a robust bioindicator of SKCM patient prognosis, and it potentially contributes to immune cell invasion in SKCM.

4.
Gut ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981667

ABSTRACT

OBJECTIVE: The metabolic characteristics of liver cancer drive considerable hurdles to immune cells function and cancer immunotherapy. However, how metabolic reprograming in the tumour microenvironment impairs the antitumour immune response remains unclear. DESIGN: Human samples and multiple murine models were employed to evaluate the correlation between GPR109A and liver cancer progression. GPR109A knockout mice, immune cells depletion and primary cell coculture models were used to determine the regulation of GPR109A on tumour microenvironment and identify the underlying mechanism responsible for the formation of intratumour GPR109A+myeloid cells. RESULTS: We demonstrate that glutamine shortage in liver cancer tumour microenvironment drives an immunosuppressive GPR109A+myeloid cells infiltration, leading to the evasion of immune surveillance. Blockade of GPR109A decreases G-MDSCs and M2-like TAMs abundance to trigger the antitumour responses of CD8+ T cells and further improves the immunotherapy efficacy against liver cancer. Mechanistically, tumour cells and tumour-infiltrated myeloid cells compete for glutamine uptake via the transporter SLC1A5 to control antitumour immunity, which disrupts the endoplasmic reticulum (ER) homoeostasis and induces unfolded protein response of myeloid cells to promote GPR109A expression through IRE1α/XBP1 pathway. The restriction of glutamine uptake in liver cancer cells, as well as the blockade of IRE1α/XBP1 signalling or glutamine supplementation, can eliminate the immunosuppressive effects of GPR109A+ myeloid cells and slow down tumour progression. CONCLUSION: Our findings identify the immunometabolic crosstalk between liver cancer cells and myeloid cells facilitates tumour progression via a glutamine metabolism/ER stress/GPR109A axis, suggesting that GPR109A can be exploited as an immunometabolic checkpoint and putative target for cancer treatment.

5.
Stroke ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38920043

ABSTRACT

BACKGROUND: This study aimed to quantify the global stroke burden attributable to low physical activity and high body mass index in adults aged ≥55 years using data from the Global Burden of Disease 2019 study. METHODS: We extracted data on stroke mortality, disability-adjusted life years, and risk factor exposure from the Global Burden of Disease 2019 study for people aged ≥55 years. We calculated the population-attributable fraction and absolute number of stroke cases and disability-adjusted life years attributable to low physical activity and high body mass index by location, age group, sex, and year. RESULTS: Globally, body mass index and physical inactivity-attributable stroke burden have declined modestly since 1990, but with diverging escalatory regional trajectories. Population growth and aging drive this rising burden. CONCLUSIONS: Multidimensional, context-specific strategies focused on modifiable lifestyle risks are imperative to address the modest declines and escalatory regional trajectories in body mass index and physical inactivity-attributable stroke burden.

6.
Skeletal Radiol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913177

ABSTRACT

OBJECTIVES: To explore the feasibility of simultaneous multi-slice (SMS) technique for reducing acquisition times in readout-segmented echo planar imaging (RESOLVE) for diffusion tensor imaging (DTI) of the knee. MATERIALS AND METHODS: A total of 30 healthy volunteers and 23 patients with knee acute injury (12 cases with anterior ligament (ACL) tears and 16 cases with patellar cartilage (PC) injury) were enrolled in this prospective study. Three DTI protocols were used: conventional RESOLVE-DTI with 12 directions (protocol 1), SMS-RESOLVE-DTI with 12 directions (protocol 2) and 20 directions (protocol 3). DTI parameters of gastrocnemius, ACL and posterior cruciate ligament (PCL), and PC from three protocols were quantitatively assessed. RESULTS: For volunteers, protocol 2 significantly reduced acquisition time by 38.6% and 34.2% compared to protocols 1 and 3 while maintaining similar high-quality images and similar diffusive parameters, except for the fractional anisotropy (FA) and axial diffusivity (AD) of the PC between protocols 2 and 1 (P < 0.05). For injured ACL and PC, protocols 1 and 2 showed similar accurate diffusive parameters (except for AD, P = 0.025) and similar diagnostic efficacy, which demonstrated significantly lower FA and higher radial diffusivity (RD) in protocols 1 and 2 compared to volunteers (P < 0.05). CONCLUSIONS: The 12-direction SMS-RESOLVE-DTI demonstrated a favorable balance between acquisition time and image quality, making it a promising alternative to conventional DTI for evaluating ligament and cartilage injuries. ADVANCES IN KNOWLEDGE: The SMS technique greatly reduces acquisition time while maintaining image quality, which signified the possibility of DTI's clinical application.

7.
Quantum Front ; 3(1): 12, 2024.
Article in English | MEDLINE | ID: mdl-38855163

ABSTRACT

FeSe is one of the most enigmatic superconductors. Among the family of iron-based compounds, it has the simplest chemical makeup and structure, and yet it displays superconducting transition temperature ( T c ) spanning 0 to 15 K for thin films, while it is typically 8 K for single crystals. This large variation of T c within one family underscores a key challenge associated with understanding superconductivity in iron chalcogenides. Here, using a dual-beam pulsed laser deposition (PLD) approach, we have fabricated a unique lattice-constant gradient thin film of FeSe which has revealed a clear relationship between the atomic structure and the superconducting transition temperature for the first time. The dual-beam PLD that generates laser fluence gradient inside the plasma plume has resulted in a continuous variation in distribution of edge dislocations within a single film, and a precise correlation between the lattice constant and T c has been observed here, namely, T c ∝ c - c 0 , where c is the c-axis lattice constant (and c 0 is a constant). This explicit relation in conjunction with a theoretical investigation indicates that it is the shifting of the d xy orbital of Fe which plays a governing role in the interplay between nematicity and superconductivity in FeSe. Supplementary Information: The online version contains supplementary material available at 10.1007/s44214-024-00058-0.

8.
Microbiol Res ; 286: 127791, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38851007

ABSTRACT

Lycoris radiata is the main source of galanthamine, a clinical drug used in Alzheimer's disease; however, the galanthamine content in L. radiata is low. Lycoris aurea is another Lycoris species with high galanthamine content. Fungal endophytes can enhance plant secondary metabolite accumulation; thus, we compared the fungal communities in these two Lycoris species to identify certain fungal taxa in L. aurea capable of enhancing galanthamine accumulation. Several fungal endophytes, which were enriched in, exclusively isolated from L. aurea, or showed significant correlations with galanthamine, were demonstrated to enhance the accumulation of only galanthamine but no other Amaryllidaceae alkaloids (AAs) in L. radiata. These fungal endophytes mainly upregulated the downstream genes in the biosynthesis pathways of AAs in L. radiata, suggesting that they may allocate more precursors for galanthamine biosynthesis. This study demonstrated that fungal endophytes from L. aurea with higher galanthamine content can specifically enhance the accumulation of this medicinal alkaloid in other Lycoris species, thereby increasing the galanthamine source and reducing galanthamine separation and purification costs. This study broadens our understanding of the complex interactions between plant secondary metabolites and fungal endophytes.

9.
Heliyon ; 10(10): e30985, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38826758

ABSTRACT

Objectives: FGFR4-variant and wild-type colorectal cancer (CRC) organoids were developed to investigate the effects of FGFR4-targeted drugs, including FGFR4-IN and erdafitinib, on CRC and their possible molecular mechanism. Methods: Clinical CRC tissues were collected, seven CRC organoids were developed, and whole exome sequencing (WES) was performed. CRC organoids were cultured and organoid drug sensitivity studies were conducted. Finally, an FGFR4-variant (no wild-type) CRC patient-derived orthotopic xenograft mouse model was developed. Western blot measured ERK/AKT/STAT3 pathway-related protein levels. Results: WES results revealed the presence of FGFR4-variants in 5 of the 7 CRC organoids. The structural organization and integrity of organoids were significantly altered under the influence of targeted drugs (FGFR4-IN-1 and erdafitinib). The effects of FGFR4 targeted drugs were not selective for FGFR4 genotypes. FGFR4-IN-1 and erdafitinib significantly reduced the growth, diameter, and Adenosine Triphosphate (ATP) activity of organoids. Furthermore, chemotherapeutic drugs, including 5-fluorouracil and cisplatin, inhibited FGFR4-variant and wild-type CRC organoid activity. Moreover, the tumor volume of mice was significantly reduced at week 6, and p-ERK1/2, p-AKT, and p-STAT3 levels were down-regulated following FGFR4-IN-1 and erdafitinib treatment. Conclusions: FGFR4-targeted and chemotherapeutic drugs inhibited the activity of FGFR4-variant and wild-type CRC organoids, and targeted drugs were more effective than chemotherapeutic drugs at the same concentration. Additionally, FGFR4 inhibitors hindered tumorigenesis in FGFR4-variant CRC organoids through ERK1/2, AKT, and STAT3 pathways. However, no wild-type control was tested in this experiment, which need further confirmation in the next study.

10.
J Transl Med ; 22(1): 549, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849852

ABSTRACT

Cellular communication (CC) influences tumor development by mediating intercellular junctions between cells. However, the role and underlying mechanisms of CC in malignant transformation remain unknown. Here, we investigated the spatiotemporal heterogeneity of CC molecular expression during malignant transformation. It was found that although both tight junctions (TJs) and gap junctions (GJs) were involved in maintaining the tumor microenvironment (TME), they exhibited opposite characteristics. Mechanistically, for epithelial cells (parenchymal component), the expression of TJ molecules consistently decreased during normal-cancer transformation and is a potential oncogenic factor. For fibroblasts (mesenchymal component), the expression of GJs consistently increased during normal-cancer transformation and is a potential oncogenic factor. In addition, the molecular profiles of TJs and GJs were used to stratify colorectal cancer (CRC) patients, where subtypes characterized by high GJ levels and low TJ levels exhibited enhanced mesenchymal signals. Importantly, we propose that leiomodin 1 (LMOD1) is biphasic, with features of both TJs and GJs. LMOD1 not only promotes the activation of cancer-associated fibroblasts (CAFs) but also inhibits the Epithelial-mesenchymal transition (EMT) program in cancer cells. In conclusion, these findings demonstrate the molecular heterogeneity of CC and provide new insights into further understanding of TME heterogeneity.


Subject(s)
Cancer-Associated Fibroblasts , Cell Communication , Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Tumor Microenvironment , Animals , Humans , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Line, Tumor , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Epithelial-Mesenchymal Transition/genetics , Gap Junctions/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Spatio-Temporal Analysis , Tight Junctions/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Autoantigens/genetics , Autoantigens/metabolism
11.
J Colloid Interface Sci ; 674: 158-167, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925061

ABSTRACT

Constructing strong interfacial electric fields to enhance the surface charge transport kinetics is an effective strategy for promoting CO2 conversion. Herein, we present the fabrication of CdS-Bi2MoO6 Z-scheme heterojunctions with a robust internal electric field (IEF) using an in situ growth technique, establishing chemical bonding between the components. The IEF at the interface can offer an impetus for the segregation and transportation of photogenerated carriers, while the Cd-O chemical bonding mode acts as a rapid conduit for these carriers, thereby reducing the charge transfer distance. As a result, the Z-scheme charge transfer is accelerated due to the synergistic influence of these two factors. Therefore, the optimized CdS/Bi2MoO6 Z-scheme heterojunction possesses significantly enhanced dynamic carrier mobility, thus promoting the conversion of CO2 to CO without the need for additional co-catalysts or sacrificial agents. This optimization yields a remarkable CO selectivity of up to 97%. Meanwhile, the expedited Z-scheme charge transfer mechanism is validated through X-ray photoelectron spectroscopy, Kelvin probe force microscopy, and in situ diffuse reflectance infrared Fourier transform spectroscopy.

12.
Biophys J ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38853434

ABSTRACT

Endothelial cells (ECs) experience a variety of highly dynamic mechanical stresses. Among others, cyclic stretch and increased plasma membrane tension inhibit clathrin-mediated endocytosis (CME) in non-ECs. It remains elusive how ECs maintain CME in these biophysically unfavorable conditions. Previously, we have used simultaneous two-wavelength axial ratiometry (STAR) microscopy to show that endocytic dynamics are similar between statically cultured human umbilical vein endothelial cells (HUVECs) and fibroblast-like Cos-7 cells. Here, we asked whether biophysical stresses generated by blood flow influence CME. We used our data processing platform-DrSTAR-to examine if clathrin dynamics are altered in HUVECs after experiencing fluidic shear stress (FSS). We found that HUVECs cultivated under a physiological level of FSS had increased clathrin dynamics compared with static controls. FSS increased both clathrin-coated vesicle formation and nonproductive flat clathrin lattices by 2.3-fold and 1.9-fold, respectively. The curvature-positive events had significantly delayed curvature initiation relative to clathrin recruitment in flow-stimulated cells, highlighting a shift toward flat-to-curved clathrin transitions in vesicle formation. Overall, our findings indicate that clathrin dynamics and clathrin-coated vesicle formation can be modulated by the local physiological environment and represent an important regulatory mechanism.

13.
J Transl Med ; 22(1): 580, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898490

ABSTRACT

The importance of the immune microenvironment in poorly cohesive carcinoma (PCC) has been highlighted due to its limited response rate to conventional therapy and emerging treatment resistance. A combination of clinical cohorts, bioinformatics analyses, and functional/molecular experiments revealed that high infiltration of Interferon Induced Protein with Tetratricopeptide Repeats 1 (IFIT1) + tumor-associated neutrophils (TANs) is a distinguishing feature of PCC patients. Upregulation of IFIT1 + TANs promote migration and invasion of gastric cancer (GC) cell lines (MKN45 and MKN74) and stimulates the growth of cell-derived xenograft models. Besides, by promoting macrophage secreted phosphoprotein 1 (SPP1) expression and facilitating cancer-associated fibroblast and endothelial cell recruitment and activation through TANs, IFIT1 promotes a mesenchymal phenotype, which is associated with a poor prognosis. Importantly, compared to non-PCC (NPCC), PCC tumors is more immunosuppressive. Mechanistically, IFIT1 can be stimulated by IFN-γ and contributes to the expression of Programmed Cell Death 1 Ligand (PDL1) in TANs. We demonstrated in mouse models that IFIT1 + PDL1 + TANs can induce acquired resistance to anti-PD-1 immunotherapy, which may be responsible for the difficulty of PCC patients to benefit from immunotherapy. This work highlights the role of IFIT1 + TANs in mediating the remodeling of the tumor immune microenvironment and immunotherapeutic resistance and introduces IFIT1 + TANs as a promising target for precision therapy of PCC.


Subject(s)
Adaptor Proteins, Signal Transducing , Neutrophils , RNA-Binding Proteins , Humans , Neutrophils/immunology , Neutrophils/metabolism , Animals , RNA-Binding Proteins/metabolism , Cell Line, Tumor , Adaptor Proteins, Signal Transducing/metabolism , Tumor Microenvironment/immunology , Female , B7-H1 Antigen/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/immunology , Male , Mice , Drug Resistance, Neoplasm , Cell Movement , Immune Tolerance , Immunosuppression Therapy , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness , Mice, Nude , Immunotherapy , Middle Aged
14.
Cell Death Dis ; 15(6): 438, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906869

ABSTRACT

Colorectal cancer (CRC) remains a major global cause of cancer-related mortality, lacking effective biomarkers and therapeutic targets. Revealing the critical pathogenic factors of CRC and the underlying mechanisms would offer potential therapeutic strategies for clinical application. G protein signaling (RGS) protein family modulators play essential role within regulating downstream signaling of GPCR receptors, with function in cancers unclear. Our study focused on the expression patterns of RGS proteins in CRC, identifying Regulator of G protein signaling 16 (RGS16) as a prospective diagnostic and therapeutic target. Analyzing 899 CRC tissues revealed elevated RGS16 levels, correlating with clinicopathological features and CRC prognosis by immunohistochemistry (IHC) combined with microarray. We confirmed the elevated RGS16 protein level in CRC, and found that patients with RGS16-high tumors exhibited decreased disease-specific survival (DSS) and disease-free survival (DFS) compared to those with low RGS16 expression. Functional assays demonstrated that RGS16 promoted the CRC progression, knockdown of RGS16 led to significantly increased apoptosis rates of CRC in vitro and in vivo. Notably, we also confirmed these phenotypes of RGS16 in organoids originated from resected primary human CRC tissues. Mechanistically, RGS16 restrained JNK/P38-mediated apoptosis in CRC cells through disrupting the recruitment of TAB2/TAK1 to TRAF6. This study provides insights into addressing the challenges posed by CRC, offering avenues for clinical translation.


Subject(s)
Apoptosis , Colorectal Neoplasms , MAP Kinase Kinase Kinases , RGS Proteins , Animals , Female , Humans , Male , Mice , Middle Aged , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Line, Tumor , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Intracellular Signaling Peptides and Proteins , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , MAP Kinase Signaling System , Mice, Nude , p38 Mitogen-Activated Protein Kinases/metabolism , RGS Proteins/metabolism , RGS Proteins/genetics , Signal Transduction , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/genetics
15.
Front Oncol ; 14: 1384913, 2024.
Article in English | MEDLINE | ID: mdl-38884096

ABSTRACT

Hyalinizing clear cell carcinomas (HCCCs) are infrequent, malignant tumors characterized by their low-grade nature. They typically originate from minor salivary glands. However, these tumors can potentially emerge in any location with minor salivary glands, including the nasopharynx. This report presents two cases of HCCC in females aged 61 and 72 years, with both tumors approximately 4 cm in size. In the first case, a 72-year-old female presented with recurrent bilateral epistaxis. Imaging studies revealed a nasopharyngeal mass, surgically excised, and histopathological analysis confirmed HCCC. Postoperatively, the patient received combined chemotherapy and radiotherapy, achieving a recurrence-free status 2.5 years later. The second case involves a 61-year-old female with a two-year history of bloody nasal discharge. Imaging studies identified a nasopharyngeal lesion, surgically removed, and histopathological examination confirmed HCCC. This patient underwent radiotherapy followed by combination chemotherapy with paclitaxel and carboplatin, displaying no signs of recurrence upon reevaluation after 10 months. These cases highlight the successful management of HCCC through a comprehensive, multimodal approach, integrating surgical intervention and adjuvant therapy. The favorable outcomes emphasize the significance of a thorough treatment strategy for HCCC in the nasopharynx, providing valuable insights for clinicians. Further studies are essential to enhance our understanding of this rare entity and refine treatment protocols for optimized patient outcomes.

16.
Transl Oncol ; 46: 102009, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833783

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is the third most common cancer worldwide. Connexin is a transmembrane protein involved in gap junctions (GJs) formation. Our previous study found that connexin 37 (Cx37), encoded by gap junction protein alpha 4 (GJA4), expressed on fibroblasts acts as a promoter of CRC and is closely related to epithelial-mesenchymal transition (EMT) and tumor immune microenvironment. However, to date, the mechanism concerning the malignancy of GJA4 in tumor stroma has not been studied. METHODS: Hematoxylin-eosin (HE) and immunohistochemical (IHC) staining were used to validate the expression and localization of GJA4. Using single-cell analysis, enrichment analysis, spatial transcriptomics, immunofluorescence staining (IF), Sirius red staining, wound healing and transwell assays, western blotting (WB), Cell Counting Kit-8 (CCK8) assay and in vivo experiments, we investigated the possible mechanisms of GJA4 in promoting CRC. RESULTS: We discovered that in CRC, GJA4 on fibroblasts is involved in promoting fibroblast activation and promoting EMT through a fibroblast-dependent pathway. Furthermore, GJA4 may act synergistically with M2 macrophages to limit T cell infiltration by stimulating the formation of an immune-excluded desmoplasic barrier. Finally, we found a significantly correlation between GJA4 and pathological staging (P < 0.0001) or D2 dimer (R = 0.03, P < 0.05). CONCLUSION: We have identified GJA4 expressed on fibroblasts is actually a promoter of the tumor mesenchymal phenotype. Our findings suggest that the interaction between GJA4+ fibroblasts and M2 macrophages may be an effective target for enhancing tumor immunotherapy.

17.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167303, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878831

ABSTRACT

Emerging evidence underscores the importance of CD8+ T cells in the pathogenesis of multiple sclerosis (MS), but the precise mechanisms remain ambiguous. This study intends to elucidate the involvement of a novel subset of follicular CD8+ T cells (CD8+CXCR5+ T) in MS and an experimental autoimmune encephalomyelitis (EAE) murine model. The expansion of CD8+CXCR5+ T cells was observed in both MS patients and EAE mice during the acute phase. In relapsing MS patients, higher frequencies of circulating CD8+CXCR5+ T cells were positively correlated with new gadolinium-enhancement lesions in the central nervous system (CNS). In EAE mice, frequencies of CD8+CXCR5+ T cells were also positively correlated with clinical scores. These cells were found to infiltrate into ectopic lymphoid-like structures in the spinal cords during the peak of the disease. Furthermore, CD8+CXCR5+ T cells, exhibiting high expression levels of ICOS, CD40L, IL-21, and IL-6, were shown to facilitate B cell activation and differentiation through a synergistic interaction between CD40L and IL-21. Transferring CD8+CXCR5+ T cells into naïve mice confirmed their ability to enhance the production of anti-MOG35-55 antibodies and contribute to the disease progression. Consequently, CD8+CXCR5+ T cells may play a role in CNS demyelination through heightening humoral immune responses.

18.
Ultrasound Med Biol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38876913

ABSTRACT

OBJECTIVES: Ultrasound imaging (USI) is the gold standard in the clinical diagnosis of thyroid diseases. Compared with two-dimensional (2D) USI, three-dimensional (3D) USI could provide more structural information. However, the unstable pressure generated by the hand-hold ultrasound probe scanning can cause tissue deformation, especially in soft tissues such as the thyroid. The deformation is manifested as tissue structure being compressed in 2D USI, which results in structural discontinuity in 3D USI. Furthermore, multiple scans apply pressure in different directions to the tissue, which will cause relative displacement between the 3D images obtained from multiple thyroid scans. METHODS: In this work, we proposed a framework to minimize the influence of the variation of pressure in thyroid 3D USI. To correct pressure artifacts in a single scanning sequence, an adaptive method to smooth the position of the 2D ultrasound (US) image sequence is adopted before performing volumetric reconstruction. To build a whole 3D US image including both sides of the thyroid gland, an iterative closest point (ICP) based registration pipeline is adopted to eliminate the relative displacement caused by different pressure directions. RESULTS: Our proposed method was validated by in vivo experiments, including healthy volunteers and volunteers with thyroid nodules at different grading levels. CONCLUSIONS: The thyroid gland and nodule are rendered intelligently in the whole scanning region to facilitate the observation of 3D USI results by the doctor. This work might make a positive contribution to the clinical diagnosis of diseases of the thyroid or other soft tissues.

19.
Chem Sci ; 15(23): 8913-8921, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38873050

ABSTRACT

The construction and application of metal-organic cages with accessible internal cavities have witnessed rapid development, however, the precise synthesis of complex metal-organic capsules with multiple cavities and achievement of multi-guest encapsulation, and further in-depth comprehension of host-multi-guest recognition remain a great challenge. Just like building LEGO blocks, herein, we have constructed a series of high-order layered metal-organic architectures of generation n (n = 1/2/3/4 is also the number of cavities) by multi-component coordination-driven self-assembly using porphyrin-containing tetrapodal ligands (like plates), multiple parallel-podal ligands (like clamps) and metal ions (like nodes). Importantly, these high-order assembled structures possessed different numbers of rigid and separate cavities formed by overlapped porphyrin planes with specific gaps. The host-guest experiments and convincing characterization proved that these capsules G2-G4 could serve as host structures to achieve multi-guest recognition and unprecedentedly encapsulate up to four C60 molecules. More interestingly, these capsules revealed negative cooperation behavior in the process of multi-guest recognition, which provides a new platform to further study complicated host-multi-guest interaction in the field of supramolecular chemistry.

20.
Ultrason Imaging ; : 1617346241259049, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38903053

ABSTRACT

Three-dimensional (3D) ultrasound imaging can be accomplished by reconstructing a sequence of two-dimensional (2D) ultrasound images. However, 2D ultrasound images usually suffer from low resolution in the elevation direction, thereby impacting the accuracy of 3D reconstructed results. The lateral resolution of 2D ultrasound is known to significantly exceed the elevation resolution. By combining scanning sequences acquired from orthogonal directions, the effects of poor elevation resolution can be mitigated through a composite reconstructing process. Moreover, capturing ultrasound images from multiple perspectives necessitates a precise probe positioning method with a wide angle of coverage. Optical tracking is popularly used for probe positioning for its high accuracy and environment-robustness. In this paper, a novel large-angle accurate optical positioning method is used for enhancing resolution in 3D ultrasound imaging through orthogonal-view scanning and composite reconstruction. Experiments on two phantoms proved that our method could significantly improve reconstruction accuracy in the elevation direction of the probe compared with single-angle parallel scanning. The results indicate that our method holds the potential to improve current 3D ultrasound imaging techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...