Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 20(5): 2362-2375, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36989419

ABSTRACT

Efficient drug delivery to solid tumors remains a challenge. HER2-positive (HER2+) tumors are an aggressive cancer subtype with a resistance to therapy, high risk of relapse, and poor prognosis. Although nanomedicine technology shows obvious advantages in tumor treatment, its potential clinical translation is still impeded by the unsatisfactory delivery and therapeutic efficacy. In this study, a gene reprogramming macrophage membrane-encapsulated drug-loading nanoplatform was developed for HER2+ cancer therapy based on the co-assembly of poly (lactic-co-glycolic acid) (PLGA) nanoparticles and engineered modified macrophage membranes. In this nanoplatform, near-infrared (NIR) fluorescent dye ICG or chemotherapeutic drug doxorubicin (DOX) was loaded into the PLGA cores, and an anti-HER2 affibody was stably expressed on the membrane of macrophages. In comparison to the nanoparticles with conventional macrophage membrane coating, the ICG/DOX@AMNP nanoparticles armed with anti-HER2 affibody showed excellent HER2-targeting ability both in vitro and in vivo. Small animal imaging studies confirmed the improved pharmacokinetics of drug delivery and specific distribution of the ICG/DOX@AMNPs in HER2+ tumors. Mechanistically, compared with DOX@NPs or DOX@MNPs nanoparticles, DOX@AMNPs exhibited synergistic inhibition of HER2+ cancer cells or mice tumor growth by inducing apoptosis and blocking the PI3K/AKT signaling pathway. Altogether, this study proposes a promising biomimetic nanoplatform for the efficient targeted delivery of chemotherapeutic agents to HER2+ tumors, demonstrating its great potential for solid tumor therapy.


Subject(s)
Bionics , Nanoparticles , Animals , Mice , Phosphatidylinositol 3-Kinases , Cell Line, Tumor , Drug Delivery Systems/methods , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Macrophages , Drug Liberation
SELECTION OF CITATIONS
SEARCH DETAIL
...