Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167456, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39122223

ABSTRACT

Myocardial fibroblasts transform into myofibroblasts during the progression of cardiac fibrosis, together with excessive cardiac fibroblast proliferation. Hence, the prevention and treatment of cardiac fibrosis are significant factors for inhibiting the development of heart failure. P-element Induced WImpy testis-interacting RNAs (PiRNA) are widely expressed in the heart, but their involvement in cardiac fibrosis has not yet been confirmed. We identified differentially expressed PiRNAs using Arraystar PiRNA expression profiling in Angiotensin II models of cardiac fibrosis in vivo and in vitro. We then explored cardiac-fibrosis-associated PiRNA-related proteins, RNA-protein interactomes, immunoprecipitation, and pulldown. We detected fibrosis markers and pathway-related proteins using immunofluorescence, qRT-PCR, and Western blot. We uncovered cardiac fibrosis associated PiRNA (CFAPIR) that was obviously dysregulated during cardiac fibrosis, whereas its overexpression reversed fibrosis in vivo and in vitro. Mechanistically, CFAPIR competitively bound muscleblind like protein 2 (MBNL2) and the cyclin-dependent kinase inhibitor P21 to regulate the TGF-ß1/SMAD3 signaling pathway.


Subject(s)
Fibrosis , RNA, Small Interfering , RNA-Binding Proteins , Signal Transduction , Smad3 Protein , Animals , Fibrosis/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Mice , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Smad3 Protein/metabolism , Smad3 Protein/genetics , Male , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Myocardium/metabolism , Myocardium/pathology , Myofibroblasts/metabolism , Myofibroblasts/pathology , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Mice, Inbred C57BL , Humans , Angiotensin II/pharmacology , Angiotensin II/metabolism , Piwi-Interacting RNA
2.
iScience ; 27(7): 110163, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38974966

ABSTRACT

Aging-related cardiac fibrosis represents the principal pathological progression in cardiovascular aging. The Muscleblind-like splicing regulator 2 (MBNL2) has been unequivocally established as being associated with cardiovascular diseases. Nevertheless, its role in aging-related cardiac fibrosis remains unexplored. This investigation revealed an elevation of MBNL2 levels in the aged heart and senescent cardiac fibroblasts. Notably, the inhibition of MBNL2 demonstrated a capacity to mitigate H2O2-induced myofibroblast transformation and aging-related cardiac fibrosis. Further mechanistic exploration unveiled that aging heightened the expression of SENP1 and impeded the SUMO1 binding with KLF4, and SUMOylation of KLF4 effectively increased by the inhibition of MBNL2. Additionally, the inhibition of TGF-ß1/SMAD3 signaling attenuated the impact of over-expression of MBNL2 in inducing senescence and cardiac fibrosis. MBNL2, by orchestrating SUMOylation of KLF4, upregulating the TGF-ß1/SMAD3 signaling pathway, emerges as a significant promoter of aging-related cardiac fibrosis. This discovery identifies a novel regulatory target for managing aging-related cardiac fibrosis.

3.
Int J Cardiol ; 401: 131858, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38360101

ABSTRACT

Heart failure (HF) is a serious clinical syndrome and a serious development or advanced stage of various heart diseases. Aging is an independent factor that causes pathological damage in cardiomyopathy and participates in the occurrence of HF at the molecular level by affecting mechanisms such as telomere shortening and mitochondrial dysfunction. Epigenetic changes have a significant impact on the aging process, and there is increasing evidence that genetic and epigenetic changes are key features of aging and aging-related diseases. Epigenetic modifications can affect genetic information by changing the chromatin state without changing the DNA sequence. Most of the genetic loci that are highly associated with cardiovascular diseases (CVD) are located in non-coding regions of the genome; therefore, the epigenetic mechanism of CVD has attracted much attention. In this review, we focus on the molecular mechanisms of HF during aging and epigenetic modifications mediating aging-related HF, emphasizing that epigenetic mechanisms play an important role in the pathogenesis of aging-related CVD and can be used as potential diagnostic and prognostic biomarkers, as well as therapeutic targets.


Subject(s)
Cardiovascular Diseases , Heart Failure , Humans , DNA Methylation , Epigenesis, Genetic/genetics , Heart Failure/diagnosis , Heart Failure/genetics , Aging/genetics , Cardiovascular Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL