Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Contracept Reprod Med ; 8(1): 19, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36859338

ABSTRACT

BACKGROUND: Exposure of the female reproductive tract to either seminal plasma or fluid component of the ejaculate is beneficial to achieving successful embryo implantation and normal embryo development. But whether the "physical" component of sexual intercourse during the peri-transfer period have any influence on frozen-thawed embryo transfer (FET) pregnancy outcomes is not clear. METHODS: We conducted a randomized trial that included 223 patients undergoing in vitro fertilization (IVF) treatment at a university-affiliated reproductive center from 19 July 2018 to 24 February 2019. Enrolled patients undergoing IVF treatment were randomized either to engage sexual intercourse using the barrier contraception (Group A, n = 116) or to abstain (Group B, n = 107) one night before FET. The primary outcome was clinical pregnancy rate. RESULTS: Patients having intercourse had higher clinical pregnancy rate (51.72% vs. 37.07%, P = 0.045) and implantation rate (38.31% vs. 24.77%, P = 0.005) compared to those did not engage intercourse. However, there was no significant difference of the spontaneous abortion rate between two groups (11.67% 33 vs. 14.63%, P = 0.662). CONCLUSIONS: Sexual intercourse before embryo transfer may improve the clinical pregnancy and implantation rates during FET cycles. However, it should be noted that patients choose only one time for sexual intercourse, that is, the night before embryo transfer. TRIAL REGISTRATION: The present study was registered at the Chinese Clinical Trial Registry ( http://www.chictr.org.cn/ , ChiCTR1800017209).

2.
Inorg Chem ; 61(28): 10694-10704, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35785788

ABSTRACT

Controlling the orderly assembly of molecular building blocks for the formation of the desired architectural, chemical, and physical properties of the resulting solid-state materials remains a long-term goal and deserves to be examined. In this work, we propose a patterning strategy for modular assembly and structural regulation of mixed-ligand uranyl coordination polymers (CPs) through the combination of couples of organic ligands with complementary molecular geometry and well-matched coordination modes. By using a 5-(p-tolyldiazenyl)isophthalic acid ligand (H2ptdi) with different rigid linear bicarboxylic acid linkers to construct a well-defined ladder-like pattern, five novel isostructural uranyl coordination polymers, [(UO)2(ptdi)(bdc)0.5](dma) (1), [(UO)2(ptdi)(bpdc)0.5](dma) (2), [(UO)2(ptdi)(tpdc)0.5](dma) (3), [(UO)2(ptdi)(ndc)0.5](dma) (4), and [(UO)2(ptdi) (pdc)0.5](dma) (5) {H2bdc, 1,4-dicarboxybenzene; H2bpdc, 4,4'-biphenyldicarboxylic acid; H2tpdc, terphenyl-4,4″-dicarboxylic acid; H2ndc, 2,6-naphthalenedicarboxylic acid; H2pdc, 1,6-pyrenedicarboxylic acid; [dma]+, [(CH3)2NH2]+}, were successfully synthesized. Structural analysis reveals that 1-5 have similar ladder-like units but different sizes of one-dimensional nanochannels and interlayer spacing due to the different lengths and widths of the linkers. Because of the changes in interlayer spacing of these isostructural cationic frameworks, differences in the performance of Eu3+ ion exchange with [dma]+ are observed. Moreover, those compounds with high phase purity have been further characterized by thermogravimetric analysis, infrared spectroscopy, and luminescence spectroscopy, element analysis, PXRD and UV spectroscopy. Among them, compound 3 with strong fluorescence can selectively detect Fe3+ over several competing metal cations in aqueous solution. This work not only provides a feasible patterning method for effectively regulating the modular synthesis of functional coordination polymers but also enriches the library of uranyl-based coordination polymers with intriguing structures and functionality.

3.
Front Oncol ; 12: 920999, 2022.
Article in English | MEDLINE | ID: mdl-35707364

ABSTRACT

In clinical practice, arsenic trioxide can be used to treat a subset of R/R CML patients, but resistance tends to reappear quickly. We designed an experiment to study arsenic trioxide resistance in K-562 cells. Previously, we identified the UNC13B gene as potentially responsible for arsenic trioxide resistance in K-562 cells via gene chip screening followed by high-content screening. We aimed to investigate the role and mechanism of the UNC13B gene in K-562 cells, an arsenic trioxide-resistant chronic myeloid leukemia cell line. In vitro lentiviral vector-mediated UNC13B siRNA transfection was performed on K-562 cells. The roles of UNC13B in cell proliferation, apoptosis and cell cycle pathways, and colony formation were analyzed by CCK-8 assay, fluorescence-activated cell sorting, and soft agar culture, respectively. Gene chip screening was used to define the possible downstream pathways of UNC13B. Western blot was performed to further validate the possible genes mediated by UNC13B for arsenic trioxide resistance in patients with chronic myeloid leukemia. UNC13B downregulation significantly inhibited growth, promoted apoptosis, decreased colony formation, reduced the duration of the G1 phase, and increased the duration of the S phase of K-562 cells. Western blot results confirmed that UNC13B may modulate the apoptosis and proliferation of arsenic trioxide-resistant chronic myeloid leukemia cells through the mediation of MAP3K7, CDK4, and PINK1. UNC13B is a potential therapeutic target for patients with arsenic trioxide-resistant chronic myeloid leukemia.

4.
Nat Commun ; 13(1): 2030, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35440111

ABSTRACT

Molecular machines based on mechanically-interlocked molecules (MIMs) such as (pseudo) rotaxanes or catenates are known for their molecular-level dynamics, but promoting macro-mechanical response of these molecular machines or related materials is still challenging. Herein, by employing macrocyclic cucurbit[8]uril (CB[8])-based pseudorotaxane with a pair of styrene-derived photoactive guest molecules as linking structs of uranyl node, we describe a metal-organic rotaxane compound, U-CB[8]-MPyVB, that is capable of delivering controllable macroscopic mechanical responses. Under light irradiation, the ladder-shape structural unit of metal-organic rotaxane chain in U-CB[8]-MPyVB undergoes a regioselective solid-state [2 + 2] photodimerization, and facilitates a photo-triggered single-crystal-to-single-crystal (SCSC) transformation, which even induces macroscopic photomechanical bending of individual rod-like bulk crystals. The fabrication of rotaxane-based crystalline materials with both photoresponsive microscopic and macroscopic dynamic behaviors in solid state can be promising photoactuator devices, and will have implications in emerging fields such as optomechanical microdevices and smart microrobotics.

5.
Article in English | MEDLINE | ID: mdl-34804183

ABSTRACT

OBJECTIVE: To identify the biological function and metabolic pathway of differential metabolites in follicular fluid of senile patients with kidney qi deficiency undergoing in vitro fertilization-embryo transfer (IVF-ET) and observe the effect of kidney-invigorating herbs on IVF outcomes in senile patients. METHODS: A total of 95 women undergoing IVF treatment were recruited and divided into three groups, including 34 cases in the treatment group (the senile patients with kidney qi deficiency after the intervention of Chinese medicine), 31 cases in the experiment group (the senile patients with kidney qi deficiency of no intervention of Chinese medicine), and 30 cases in the control group (young women with infertility due to male factor). The three groups of women were treated with long protocol ovarian hyperstimulation; the treatment group was given Qi-Zi-Yu-Si decoction on the day of HCG downregulation. Their IVF clinical outcomes were observed. The metabolites changes of kidney qi deficiency syndrome were analyzed in follicular fluid metabolomics using liquid chromatography-mass spectrometry (UPLC-MS/MS). RESULTS: The syndrome score of kidney qi deficiency syndrome in the treatment group was significantly improved after treatment (P < 0.01). Compared with the experiment group, the available embryo rate and implantation rate were increased, and the difference was statistically significant (P < 0.05). Progesterone, indoleacrylic acid, 2-propenyl 1-(1-propenylsulfinyl) propyl disulfide, N-acetyltryptophan, decanoylcarnitine, 20a-dihydroprogesterone, testosterone acetate, eicosatrienoic acid, 1H-indole-3-carboxaldehyde, choline, phosphorylcholine, and tryptophan were downregulated in the treatment group. Through pathway analysis, glycerophospholipid metabolism and steroid hormone biosynthesis were regulated in senile patients with kidney qi deficiency after Qi-Zi-Yu-Si decoction intervention. CONCLUSION: Qi-Zi-Yu-Si decoction can effectively improve the IVF outcome and clinical symptoms of senile patients. Follicular fluid metabolites were significantly changed in senile infertile women with kidney qi deficiency, and the mechanism by which kidney-invigorating herbs improve IVF treatment outcomes may be related to glycerophospholipid metabolism and steroid hormone biosynthesis. This study was registered in the Chinese Clinical Trials Registry Platform (ChiCTR1800014422).

6.
Inorg Chem ; 60(12): 8519-8529, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34096273

ABSTRACT

Monitoring and quantification of the photoresponsive behavior of metal-organic frameworks that respond to a light stimulus are crucial to establish a clear structure-activity relationship related to light regulation. Herein, we report the first azobenzene-modified photoresponsive thorium-organic framework (Th-Azo-MOF) with the formula [Th6O4(OH)4(H2O)6L6] (H2L = (E)-2'-p-tolyldiazenyl-1,1':4',4'-terphenyl-4,4″-dicarboxylic acid), in which the utilization of a thorium cluster as a metal node leads to one of the largest pore sizes among all the azobenzene-containing metal-organic frameworks (MOFs). The phototriggered transformation of the trans isomer to the cis isomer is monitored and characterized quantitatively by comprehensive analyses of NMR and UV spectroscopy, which reveals that the maximum isomerization ratio of cisTh-Azo-MOF in the solid state is 19.7% after irradiation for 120 min, and this isomerization is reversible and can be repeated several times without apparent performance changes. Moreover, the isomerization-related difference in the adsorption of the Rhodamine B guest is also illustrated and a possible photoregulated mechanism is proposed. This work will shed light on new explorations for constructing functionalized actinide porous materials by the elegant combination of actinide nodes with tailored organic ligands and furthermore will provide a comprehensive understanding of photoisomerization processes in MOF solids and insight into the mechanism on photoregulated cargo adsorption and release by photoactive MOFs.

7.
Cell Mol Gastroenterol Hepatol ; 12(1): 251-276, 2021.
Article in English | MEDLINE | ID: mdl-33652118

ABSTRACT

BACKGROUND & AIMS: The circadian clock is crucial for physiological homeostasis including gut homeostasis. Disorder of the circadian clock may contribute to many diseases including inflammatory bowel disease (IBD). However, the role and the mechanisms of circadian clock involvement in IBD still are unclear. METHODS: Disorder of the circadian clock including chronic social jet lag and circadian clock gene deficiency mice (Bmal1-/-, and Per1-/-Per2-/-) were established. Dextran sulfate sodium (DSS) and/or azoxymethane were used to induce mouse models of colitis and its associated colorectal cancer. Flow cytometry, immunohistochemistry, immunofluorescence, Western blot, and reverse-transcription quantitative polymerase chain reaction were used to analyze the characteristics of immune cells and their related molecules. RESULTS: Mice with disorders of the circadian clock including chronic social jet lag and circadian clock gene deficiency were susceptible to colitis. Functionally, regulatory B (Breg) cells highly expressing Programmed cell death 1 ligand 1 (PDL1) in intestinal intraepithelial lymphocytes (IELs) helped to alleviate the severity of colitis after DSS treatment and was dysregulated in DSS-treated Bmal1-/- mice. Notably, interleukin 33 in the intestinal microenvironment was key for Bmal1-regulated PDL1+ Breg cells and interleukin 33 was a target of Bmal1 transcriptionally. Dysregulated PDL1+ B cells induced cell death of activated CD4+ T cells in DSS-treated Bmal1-/- mice. Consequently, circadian clock disorder was characterized as decreased numbers of Breg+ PDL1+ cells in IELs and dysfunction of CD4+ T cells promoted colitis-associated colorectal cancer (CRC) in mice. In clinical samples from CRC patients, low expression of Bmal1 gene in paracancerous tissues and center area of tumor was associated closely with a poorer prognosis of CRC patients. CONCLUSIONS: Our study uncovers the importance of the circadian clock regulating PDL1+ Breg+ cells of IELs in IBD and IBD-associated CRC.


Subject(s)
B-Lymphocytes/metabolism , B7-H1 Antigen/metabolism , Circadian Clocks/genetics , Colitis-Associated Neoplasms/metabolism , Colitis/metabolism , Animals , Apoptosis , B7-H1 Antigen/genetics , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , Colitis/pathology , Colitis-Associated Neoplasms/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout
8.
Int J Clin Pharm ; 43(3): 518-523, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32996075

ABSTRACT

Background The abuse and deficiency of nutritional support coexist in China, and clinical pharmacists have responsibilities to promote the rational use of drugs. Objective Apply the Screening Tool Risk on Nutritional Status and Growth to observe the influence of parenteral nutrition on children with an incarcerated hernia and educate physicians to promote the rational use of parenteral nutrition. Setting Department of General Surgery of Nanjing children's hospital. Method Patients were grouped according to the sores of Screening Tool Risk on Nutritional Status and Growth, and each group was then divided into subgroups according to receiving parenteral nutrition only (subgroup A) or no extra nutritional support (subgroup B). The clinical results were compared to ascertain whether parenteral nutrition was necessary, and the clinical pharmacists educated the physicians according to the results. One year later, the clinical results before and after education were compared. Main outcome measure Nutritional indicators (body weight, albumin, prealbumin, retinol binding protein), length of hospital stay after operation, hospitalization cost and incidence of adverse reactions. Results There were no significant differences in changes of nutritional indicators between the A and B subgroups of the score 1 and 2 groups. In the score 3 group, decreases of nutritional indicators were more pronounced in subgroup B than in subgroup A, and the length of hospital stay after operation was significantly shorter in subgroup A. The incidence of adverse reactions was significantly higher for those who received parenteral nutrition. One year after the clinical pharmacists educated the staff, the use of parenteral nutrition, hospitalization cost and incidence of adverse reactions significantly decreased. Conclusions Clinical pharmacists played an important role in improving the rational use of parenteral nutrition.


Subject(s)
Parenteral Nutrition , Pharmacists , Child , China/epidemiology , Humans , Length of Stay , Nutritional Status
9.
J Phys Chem A ; 124(18): 3626-3635, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32282201

ABSTRACT

Due to the role of dyes in dye-sensitized solar cells (DSSCs), designing novel dye sensitizers is an effective strategy to improve the power conversion efficiency. To this end, the fundamental issue is understanding the sensitizer's trilateral relationship among its molecular structure, optoelectronic properties, and photovoltaic performance. Considering the good performance of N-annulated perlyene dye sensitizers, the geometries, electronic structures, and excitations of the selected representative organic dye sensitizers C276, C277, and C278 as well as dyes adsorbed on TiO2 clusters were calculated in order to investigate the relationship between molecular structures and properties. It was found that fusing thienyl to N-annulated perlyene can elevate the highest occupied molecular orbital (HOMO) energy, reduce the orbital energy gap, increase the density of states, expand the HOMO to the benzothiadiazole moiety, enhance the charge transfer excitation, elongate the fluorescence lifetime, amplify the light harvesting efficiency, and induce a red-shift of the absorption spectra. The transition configurations and molecular orbitals of the dye-adsorbed systems support that the electron injection in DSSCs based on these dyes is a fast mode. Based on extensive analysis of the electronic structures and excitation properties of these dye sensitizers and the dye-adsorbed systems, we present new quantities as open-circuit voltage and short-circuit current density descriptors that celebrate the quantitative bridge between the photovoltaic parameters and the electronic structure-related properties in order to expose the relationship between properties and performance. The results of this work are critical for the design of novel dye sensitizers for solar cells.

10.
Int J Mol Sci ; 16(11): 27707-20, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26610469

ABSTRACT

Dye sensitizers can significantly affect power conversion efficiency of dye-sensitized solar cells (DSSCs). Porphyrin-based dyes are promising sensitizers due to their performances in DSSCs. Here, based upon a N-fused carbazole-zinc porphyrin-free-base porphyrin triad containing an ethynyl-linkage (coded as DTBC), the novel porphyrin dyes named DTBC-MP and DTBC-TP were designed by varying the porphyrin-free-base units in the π conjugation of DTBC in order to study the effect of porphyrin-free-base in the modification of electronic structures and related properties. The calculated results indicate that, the extension of the conjugate bridge with the porphyrin-free-base unit results in elevation of the highest occupied molecular orbital (HOMO) energies, decrease of the lowest unoccupied molecular orbital (LUMO) energies, reduction of the HOMO-LUMO gap, red-shift of the absorption bands, and enhancement of the absorbance. The free energy changes demonstrate that introducing more porphyrin-free-base units in the conjugate bridge induces a faster rate of electron injection. The transition properties and molecular orbital characters suggest that the different transition properties might lead to a different electron injection mechanism. In terms of electronic structure, absorption spectra, light harvesting capability, and free energy changes, the designed DTBC-TP is a promising candidate dye sensitizer for DSSCs.


Subject(s)
Carbazoles/chemistry , Metalloporphyrins/chemistry , Models, Theoretical , Models, Molecular
11.
Huan Jing Ke Xue ; 34(8): 2975-82, 2013 Aug.
Article in Chinese | MEDLINE | ID: mdl-24191538

ABSTRACT

The methane emission data of paddy fields was obtained by using the static chamber and gas chromatography, and six parameters including atmospheric temperature, soil temperature at 5 cm depth, pH of soil, Eh of soil, soil moisture and ground biomass were selected as the primary influencing factors of methane emission. The support vector regression (epsilon-SVR) model was built on the optimization of structural risk minimization, and the parameters of the epsilon-SVR model were optimized using Leave-one-out Cross Validation (LOOCV). The prediction accuracy of model was evaluated by k-fold cross validation with the mean relative error (MRE) and the root mean square error (RMSE). In addition, the accuracy of the epsilon-SVR model was analyzed by comparison with the Back Propagation-Artificial Neural Network (BP-ANN) model. The results indicated that the predicted value of the epsilon-SVR model with the parameters C and epsilon optimized by LOOCV was in good agreement with the measured value, and the average MRE of test samples was 44% and the average RMSE was 16.21 mg x (m2 x h)(-1) in the process of 11-fold cross validation. Compared with the BP-ANN model, the correlation coefficient was 0.863, and all the indicators were better. It demonstrated that the 8-SVR model could be applied to the prediction of methane emission of paddy fields.


Subject(s)
Methane/chemistry , Oryza , Soil/chemistry , Neural Networks, Computer , Regression Analysis , Support Vector Machine , Temperature
12.
Int J Mol Sci ; 14(3): 5461-81, 2013 Mar 08.
Article in English | MEDLINE | ID: mdl-23528853

ABSTRACT

To understand the role of the conjugate bridge in modifying the properties of organic dye sensitizers in solar cells, the computations of the geometries and electronic structures for 10 kinds of tetrahydroquinoline dyes were performed using density functional theory (DFT), and the electronic absorption and fluorescence properties were investigated via time dependent DFT. The population analysis, molecular orbital energies, radiative lifetimes, exciton binding energies (EBE), and light harvesting efficiencies (LHE), as well as the free energy changes of electron injection ( ) and dye regeneration ( ) were also addressed. The correlation of charge populations and experimental open-circuit voltage (Voc) indicates that more charges populated in acceptor groups correspond to larger Voc. The elongating of conjugate bridge by thiophene units generates the larger oscillator strength, higher LHE, larger absolute value of , and longer relative radiative lifetime, but it induces the decreasing of EBE and . So the extending of conjugate bridge with thiopene units in organic dye is an effective way to increase the harvest of solar light, and it is also favorable for electron injection due to their larger . While the inversely correlated relationship between EBE and LHE implies that the dyes with lower EBE produce more efficient light harvesting.

13.
J Mol Model ; 19(4): 1553-63, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23271308

ABSTRACT

The computations of the geometries, electronic structures, dipole moments and polarizabilities for indoline and triphenylamine (TPA) based dye sensitizers, including D102, D131, D149, D205, TPAR1, TPAR2, TPAR4, and TPAR5, were performed using density functional theory, and the electronic absorption properties were investigated via time-dependent density functional theory with polarizable continuum model for solvent effects. The population analysis indicates that the donating electron capability of TPA is better than that of indoline group. The reduction driving forces for the oxidized D131 and TPAR1 are slightly larger than that of other dyes because of their lower highest occupied molecular orbital level. The absorption properties and molecular orbital analysis suggest that the TPA and 4-(2,2diphenylethenyl)phenyl substituent indoline groups are effective chromophores in intramolecular charge transfer (IMCT), and they play an important role in sensitization of dye-sensitized solar cells (DSCs). The better performance of D205 in DSCs results from more IMCT excited states with larger oscillator strength and higher light harvesting efficiency. While for TPA dyes, the longer conjugate bridges generate the larger oscillator strength and light harvesting efficiency, and the TPAR1 and TPAR4 have larger free energy change for electron injection and dye regeneration.

14.
J Mol Graph Model ; 38: 419-29, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23117291

ABSTRACT

The photon to current conversion efficiency of dye-sensitized solar cells (DSCs) can be significantly affected by dye sensitizers. The design of novel dye sensitizers with good performance in DSCs depend on the dye's information about electronic structures and optical properties. Here, the geometries, electronic structures, as well as the dipole moments and polarizabilities of organic dye sensitizers C343 and 20 kinds of NKX derivatives were calculated using density functional theory (DFT), and the computations of the time dependent DFT with different functionals were performed to explore the electronic absorption properties. Based upon the calculated results and the reported experimental work, we analyzed the role of different conjugate bridges, chromophores, and electron acceptor groups in tuning the geometries, electronic structures, optical properties of dye sensitizers, and the effects on the parameters of DSCs were also investigated.


Subject(s)
Aniline Compounds/chemistry , Coloring Agents/chemistry , Coumarins/chemistry , Electrons , Photons , Models, Molecular , Quantum Theory , Solar Energy/statistics & numerical data , Static Electricity , Sunlight , Time Factors
15.
Chin J Cancer ; 31(12): 564-72, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22507219

ABSTRACT

According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research.


Subject(s)
Cell Differentiation/drug effects , Neoplasms/pathology , Neoplastic Stem Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/metabolism , Drug Carriers , Gold/administration & dosage , Humans , Nanostructures , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology
16.
ACS Appl Mater Interfaces ; 3(9): 3308-15, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21870870

ABSTRACT

In this paper, highly selective core-shell molecularly imprinted polymers (MIPs) of tadalafil on the surface of magnetic nanoparticles (MNPs) were prepared. Three widely used functional monomers 2-(trifluoromethyl) acrylic acid (TFMAA), acrylic acid (AA), and methacrylic acid (MAA) were compared theoretically as the candidates for MIP preparation. MIP-coated magnetic nanoparticles (MIP-coated MNPs) showed large adsorption capacity, high recognition ability, and fast binding kinetics for tadalafil. Furthermore, because of the good magnetic properties, MIP-coated MNPs can achieve rapid and efficient separation with an external magnetic field simply. The resulting MIP-coated MNPs were used as dispersive solid-phase extraction (DSPE) materials coupled with HPLC-UV for the selective extraction and detection of tadalafil from medicines (herbal sexual health products). Encouraging results were obtained. The amounts of tadalafil that were detected from the herbal sexual health product was 43.46 nmol g(-1), and the recoveries were in the range of 87.36-90.93% with the RSD < 6.55%.


Subject(s)
Carbolines/chemistry , Drugs, Chinese Herbal/chemistry , Magnetite Nanoparticles/chemistry , Molecular Imprinting/methods , Polymers/chemistry , Acrylates/chemistry , Adsorption , Carbolines/isolation & purification , Chromatography, High Pressure Liquid/methods , Methacrylates/chemistry , Solid Phase Extraction/methods , Tadalafil
17.
J Cancer Res Clin Oncol ; 137(3): 533-41, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20502916

ABSTRACT

PURPOSE: To investigate the expression of SUMO-1 in human hepatocellular carcinoma (HCC) cell lines and clinical HCC samples. METHODS: RT-PCR and Western blot were used to detect the expressions of SUMO-1 in HCC cell lines, clinical HCC samples,and the non-neoplastic liver tissues adjacent to HCC. After transfection of SUMO-1 siRNA into HCC cell line SMMC-7721, the expression levels of Bcl-2, c-Myc and α-tubulin were examined, and MTT assay and cell cycle analysis were carried out as well. RESULTS: Overexpressions of SUMO-1 were detected in HCC cell lines and clinical HCC samples, while the expression level of SUMO-1 in the non-neoplastic liver tissues was significantly lower (P < 0.001). Transfection of SUMO-1 siRNA resulted in 73.43% of maximal silencing efficiency of SUMO-1 in 48 h. The expressions of Bcl-2 and c-Myc were down-regulated coincidentally. SUMO-1 siRNA notably inhibited SMMC-7721 cells proliferation in vitro and increased the ratios of G2 phase and S phase in the cells. CONCLUSIONS: Owing to overexpression of SUMO-1 in HCC and its important role in the development of HCC, SUMO-1 could be a latent target in diagnosis and therapy of HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , SUMO-1 Protein/biosynthesis , Adult , Aged , Biomarkers, Tumor/biosynthesis , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Cell Line, Tumor , Down-Regulation , Female , Humans , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Male , Middle Aged , Molecular Targeted Therapy/methods , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-myc/biosynthesis , Proto-Oncogene Proteins c-myc/genetics , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , SUMO-1 Protein/genetics , Transfection
18.
Pharmacol Res ; 59(3): 189-93, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19101632

ABSTRACT

A sensitive, selective and simple method using a precipitation of protein with 10% perchloric acid, followed by high-performance liquid chromatography (HPLC) with fluorescence detection was developed for the determination of itopride hydrochloride in human plasma, using levofloxacin as the internal standard (IS). Chromatographic separation was obtained within 7.0 min using a reverse phase Hypersil BDS C(18) (250 mm x 4.6 mm, 5 microm) column and an isocratic mobile phase, constituting of a mixture of 0.1 mol/l ammonium acetate-methanol (30:70, v/v) flowing at 1.1 ml/min. The excitation and emission wavelengths were set at 304 and 344 nm, respectively. The method was validated over the concentration range of 5 ng/ml to 1000.0 ng/ml. The lower limit of quantitation (LLOQ) was 5 ng/ml. The extractive recovery of itopride hydrochloride from the biological matrix was more than 80.77%. The intra-day accuracy of the drug containing serum samples was more than 82.94% with a precision of 2.81-4.37%. The inter-day accuracy was 82.91% or more, with a precision of 6.89-9.54%. The limit we have used (70-143%) is based on the local regulatory authority (SFDA). The developed method was validated and successfully applied to bioequivalence studies of itopride hydrochloride in healthy male volunteers.


Subject(s)
Benzamides/blood , Benzyl Compounds/blood , Chromatography, High Pressure Liquid/methods , Absorption , Adult , Cross-Over Studies , Drug Stability , Fluorescence , Humans , Therapeutic Equivalency
SELECTION OF CITATIONS
SEARCH DETAIL
...