Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; : e2304108, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979870

ABSTRACT

Many diseases are associated with genetic mutation and expression of mutated proteins, such as cancers. Therapeutic approaches that selectively target the synthesis process of multiple proteins show greater potential compared to single-protein approaches in oncological diseases. However, conventional agents to regulate the synthesis of multiple protein still suffer from poor spatiotemporal selectivity and stability. Here, a new method using a dye-peptide conjugate, PRFK, for multi-protein interference with spatiotemporal selectivity and reliable stability, is reported. By using the peptide sequence that targets tumor cells, PRFK can be efficiently taken up, followed by specific binding to the KDELR (KDEL receptor) protein located in the endoplasmic reticulum (ER). The dye generates 1O2 under light irradiation, enabling photodynamic therapy. This process converts the furan group into a cytidine-reactive intermediate, which covalently binds to mRNA, thereby blocking protein synthesis. Upon treating 4T1 cells, the proteomics data show alterations in apoptosis, ferroptosis, proliferation, migration, invasion, and immune infiltration, suggesting that multi-protein interference leads to the disruption of cellular physiological activities, ultimately achieving tumor treatment. This study presents a multi-protein interference probe with the potential for protein interference within various subcellular organelles in the future.

2.
Angew Chem Int Ed Engl ; 63(9): e202317578, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38192016

ABSTRACT

Designing reactive calcium-based nanogenerators to produce excess calcium ions (Ca2+ ) in tumor cells is an attractive tumor treatment method. However, nanogenerators that introduce exogenous Ca2+ are either overactive incapable of on-demand release, or excessively inert incapable of an overload of calcium rapidly. Herein, inspired by inherently diverse Ca2+ -regulating channels, a photo-controlled Ca2+ nanomodulator that fully utilizes endogenous Ca2+ from dual sources was designed to achieve Ca2+ overload in tumor cells. Specifically, mesoporous silica nanoparticles were used to co-load bifunctional indocyanine green as a photodynamic/photothermal agent and a thermal-sensitive nitric oxide (NO) donor (BNN-6). Thereafter, they were coated with hyaluronic acid, which served as a tumor cell-targeting unit and a gatekeeper. Under near-infrared light irradiation, the Ca2+ nanomodulator can generate reactive oxygen species that stimulate the transient receptor potential ankyrin subtype 1 channel to realize Ca2+ influx from extracellular environments. Simultaneously, the converted heat can induce BNN-6 decomposition to generate NO, which would open the ryanodine receptor channel in the endoplasmic reticulum and allow stored Ca2+ to leak. Both in vitro and in vivo experiments demonstrated that the combination of photo-controlled Ca2+ influx and release could enable Ca2+ overload in the cytoplasm and efficiently inhibit tumor growth.


Subject(s)
Nanoparticles , Neoplasms , Humans , Calcium , Phototherapy , Neoplasms/drug therapy , Indocyanine Green , Endoplasmic Reticulum
SELECTION OF CITATIONS
SEARCH DETAIL