Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Hered ; 114(5): 521-528, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37335574

ABSTRACT

Spiny lizards (genus Sceloporus) have long served as important systems for studies of behavior, thermal physiology, dietary ecology, vector biology, speciation, and biogeography. The western fence lizard, Sceloporus occidentalis, is found across most of the major biogeographical regions in the western United States and northern Baja California, Mexico, inhabiting a wide range of habitats, from grassland to chaparral to open woodlands. As small ectotherms, Sceloporus lizards are particularly vulnerable to climate change, and S. occidentalis has also become an important system for studying the impacts of land use change and urbanization on small vertebrates. Here, we report a new reference genome assembly for S. occidentalis, as part of the California Conservation Genomics Project (CCGP). Consistent with the reference genomics strategy of the CCGP, we used Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology to produce a de novo assembled genome. The assembly comprises a total of 608 scaffolds spanning 2,856 Mb, has a contig N50 of 18.9 Mb, a scaffold N50 of 98.4 Mb, and BUSCO completeness score of 98.1% based on the tetrapod gene set. This reference genome will be valuable for understanding ecological and evolutionary dynamics in S. occidentalis, the species status of the California endemic island fence lizard (S. becki), and the spectacular radiation of Sceloporus lizards.


Subject(s)
Genome , Lizards , Animals , Mexico , Ecosystem , Genomics , Lizards/genetics
2.
Syst Biol ; 72(4): 874-884, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37186031

ABSTRACT

Interspecific hybridization may act as a major force contributing to the evolution of biodiversity. Although generally thought to reduce or constrain divergence between 2 species, hybridization can, paradoxically, promote divergence by increasing genetic variation or providing novel combinations of alleles that selection can act upon to move lineages toward new adaptive peaks. Hybridization may, then, play a key role in adaptive radiation by allowing lineages to diversify into new ecological space. Here, we test for signatures of historical hybridization in the Anolis lizards of Puerto Rico and evaluate 2 hypotheses for the role of hybridization in facilitating adaptive radiation-the hybrid swarm origins hypothesis and the syngameon hypothesis. Using whole genome sequences from all 10 species of Puerto Rican anoles, we calculated D and f-statistics (from ABBA-BABA tests) to test for introgression across the radiation and employed multispecies network coalescent methods to reconstruct phylogenetic networks that allow for hybridization. We then analyzed morphological data for these species to test for patterns consistent with transgressive evolution, a phenomenon in which the trait of a hybrid lineage is found outside of the range of its 2 parents. Our analyses uncovered strong evidence for introgression at multiple stages of the radiation, including support for an ancient hybrid origin of a clade comprising half of the extant Puerto Rican anole species. Moreover, we detected significant signals of transgressive evolution for 2 ecologically important traits, head length and toepad width, the latter of which has been described as a key innovation in Anolis. [Adaptive radiation; introgression; multispecies network coalescent; phenotypic evolution; phylogenetic network; reticulation; syngameon; transgressive segregation.].


Subject(s)
Lizards , Animals , Phylogeny , Lizards/genetics , Hybridization, Genetic , Biodiversity , Puerto Rico , Biological Evolution
3.
Evolution ; 77(4): 1031-1042, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36744479

ABSTRACT

Species whose ranges encompass substantial environmental variation should experience heterogeneous selection, potentially resulting in local adaptation. Repeated covariation between phenotype and environment across ecologically similar species inhabiting similar environments provides strong evidence for adaptation. Lesser Antillean anoles present an excellent system in which to study repeated local adaptation because most species are widespread generalists occurring throughout environmentally heterogenous island landscapes. We leveraged this natural replication to test the hypothesis that intraspecific variation in phenotype (coloration and morphology) is consistently associated with environment across 9 species of bimaculatus series anoles. We measured dorsal coloration from 173 individuals from 6 species and 16 morphological traits from 883 individuals from 9 species, spanning their island ranges. We identified striking, but incomplete, parallelism in dorsal coloration associated with annual precipitation in our study species. By contrast, we observed significant patterns of morphological isolation-by-environment in only 2 species and no signal of parallel morphological evolution. Collectively, our results reveal strong divergent natural selection by environment on dorsal coloration but not morphology.


Subject(s)
Lizards , Animals , Lizards/genetics , Adaptation, Physiological/genetics , Acclimatization , Phenotype , Selection, Genetic , Biological Evolution
4.
Proc Biol Sci ; 289(1987): 20221871, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36382524

ABSTRACT

The evolution of costly signalling traits has largely focused on male ornaments. However, our understanding of ornament evolution is necessarily incomplete without investigating the causes and consequences of variation in female ornamentation. Here, we study the Anolis lizard dewlap, a trait extensively studied as a male secondary sexual characteristic but present in females of several species. We characterized female dewlaps for 339 species to test hypotheses about their evolution. Our results did not support the hypothesis that female dewlaps are selected against throughout the anole phylogeny. Rather, we found that female dewlaps were evolutionary labile. We also did not find support for the adaptive hypothesis that interspecific competition drove the evolution of female dewlaps. However, we did find support for the pleiotropy hypothesis as species with larger females and reduced sexual size dimorphism were more likely to possess female dewlaps. Lastly, we found that female dewlap presence influenced diversification rates in anoles, but only secondarily to a hidden state. Our results demonstrate that female ornamentation is widespread in anoles and the traditional hypothesis of divergent selection between the sexes does not fully explain their evolution. Instead, female ornamentation is likely to be subject to complex adaptive and non-adaptive evolutionary forces.


Subject(s)
Lizards , Animals , Male , Female , Phylogeny , Phenotype , Sex Characteristics , Biological Evolution
5.
Mol Ecol ; 29(1): 40-55, 2020 01.
Article in English | MEDLINE | ID: mdl-31710739

ABSTRACT

Epigenetic changes can provide a pathway for organisms to respond to local environmental conditions by influencing gene expression. However, we still know little about the spatial distribution of epigenetic variation in natural systems, how it relates to the distribution of genetic variation and the environmental structure of the landscape, and the processes that generate and maintain it. Studies examining spatial patterns of genetic and epigenetic variation can provide valuable insights into how ecological and population processes contribute to epigenetic divergence across heterogeneous landscapes. Here, we perform a comparative analysis of spatial genetic and epigenetic variation based on 8,459 single nucleotide polymorphisms (SNPs) and 8,580 single methylation variants (SMVs) from eight populations of the Puerto Rican crested anole, Anolis cristatellus, an abundant lizard in the adaptive radiations of anoles on the Greater Antilles that occupies a diverse range of habitats. Using generalized dissimilarity modelling and multiple matrix regression, we found that genome-wide epigenetic differentiation is strongly correlated with environmental divergence, even after controlling for the underlying genetic structure. We also detected significant associations between key environmental variables and 96 SMVs, including 42 located in promoter regions or gene bodies. Our results suggest an environmental basis for population-level epigenetic differentiation in this system and contribute to better understanding how environmental gradients structure epigenetic variation in nature.


Subject(s)
Ecology , Epigenesis, Genetic , Lizards/genetics , Animals , DNA Methylation , Ecosystem , Environment , Epigenomics , Genetics, Population , Male , Puerto Rico
7.
J Evol Biol ; 32(10): 1152-1162, 2019 10.
Article in English | MEDLINE | ID: mdl-31397924

ABSTRACT

Inbreeding depression, the reduction in fitness due to mating of related individuals, is of particular conservation concern in species with small, isolated populations. Although inbreeding depression is widespread in natural populations, long-lived species may be buffered from its effects during population declines due to long generation times and thus are less likely to have evolved mechanisms of inbreeding avoidance than species with shorter generation times. However, empirical evidence of the consequences of inbreeding in threatened, long-lived species is limited. In this study, we leverage a well-studied population of gopher tortoises, Gopherus polyphemus, to examine the role of inbreeding depression and the potential for behavioural inbreeding avoidance in a natural population of a long-lived species. We tested the hypothesis that increased parental inbreeding leads to reduced hatching rates and offspring quality. Additionally, we tested for evidence of inbreeding avoidance. We found that high parental relatedness results in offspring with lower quality and that high parental relatedness is correlated with reduced hatching success. However, we found that hatching success and offspring quality increase with maternal inbreeding, likely due to highly inbred females mating with more distantly related males. We did not find evidence for inbreeding avoidance in males and outbred females, suggesting sex-specific evolutionary trade-offs may have driven the evolution of mating behaviour. Our results demonstrate inbreeding depression in a long-lived species and that the evolution of inbreeding avoidance is shaped by multiple selective forces.


Subject(s)
Inbreeding Depression , Inbreeding , Turtles/genetics , Turtles/physiology , Animals , Female , Male , Reproduction/genetics
8.
Evolution ; 73(2): 231-244, 2019 02.
Article in English | MEDLINE | ID: mdl-30593664

ABSTRACT

The performance of an organism in its environment frequently depends more on its composite phenotype than on individual phenotypic traits. Thus, understanding environmental adaptation requires investigating patterns of covariation across functionally related traits. The replicated adaptive radiations of Greater Antillean Anolis lizards are characterized by ecological and morphological convergence, thus, providing an opportunity to examine the role of multiple phenotypes in microhabitat adaptation. Here, we examine integrated claw and toepad morphological evolution in relation to habitat partitioning across the adaptive radiations of Greater Antillean anoles. Based on analysis of 428 specimens from 57 species, we found that different aspects of claw morphology were associated with different perch dimensions, with claw height positively associated with perch diameter and claw curvature positively associated with perch height. Patterns of integration also varied across claw and toepad traits, likely driven by correlative selection for performance on smoother and rougher substrates. Finally, rates of evolution differed between claw and toepad traits, with claw length evolving faster than all other traits despite having no predicted functional importance. Our results highlight the multivariate nature of phenotypic adaptation and suggest that phenotypic integration across Greater Antillean anoles is driven by fine-scale correlative selection based on structural habitat specialization.


Subject(s)
Adaptation, Physiological/genetics , Ecosystem , Foot/anatomy & histology , Lizards/physiology , Animals , Humans , Lizards/genetics
9.
PLoS One ; 13(3): e0194265, 2018.
Article in English | MEDLINE | ID: mdl-29534110

ABSTRACT

Spatial heterogeneity in the strength or agents of selection can lead to geographic variation in ecologically important phenotypes. Many dendrobatid frogs sequester alkaloid toxins from their diets and often exhibit fixed mutations at NaV1.4, a voltage-gated sodium ion channel associated with alkaloid toxin resistance. Yet previous studies have noted an absence of resistance mutations in individuals from several species known to sequester alkaloid toxins, suggesting possible intraspecific variation for alkaloid resistance in these species. Toxicity and alkaloid profiles vary substantially between populations in several poison frog species (genus Dendrobates) and are correlated with variation in a suite of related traits such as aposematic coloration. If resistance mutations are costly, due to alterations of channel gating properties, we expect that low toxicity populations will have reduced frequencies and potentially even the loss of resistance alleles. Here, we examine whether intraspecific variation in toxicity in three dendrobatid frogs is associated with intraspecific variation in alleles conferring toxin resistance. Specifically, we examine two species that display marked variation in toxicity throughout their native ranges (Dendrobates pumilio and D. granuliferus) and one species with reduced toxicity in its introduced range (D. auratus). However, we find no evidence for population-level variation in alkaloid resistance at NaV1.4. In fact, contrary to previous studies, we found that alkaloid resistance alleles were not absent in any populations of these species. All three species exhibit fixed alkaloid resistance mutations throughout their ranges, suggesting that these mutations are maintained even when alkaloid sequestration is substantially reduced.


Subject(s)
Alkaloids/toxicity , Anura/physiology , Biological Evolution , Drug Resistance/genetics , NAV1.4 Voltage-Gated Sodium Channel/genetics , Poisons/toxicity , Alleles , Animals , Behavior, Animal/physiology , Biological Variation, Population/genetics , Feeding Behavior/physiology , Gas Chromatography-Mass Spectrometry , Geography , Haplotypes , Liver/anatomy & histology , Mice , Mutation , NAV1.4 Voltage-Gated Sodium Channel/metabolism , Phenotype , Toxicity Tests/methods
10.
Sci Rep ; 6: 31519, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27528013

ABSTRACT

Field studies of wild vertebrates are frequently associated with extensive collections of banked fecal samples-unique resources for understanding ecological, behavioral, and phylogenetic effects on the gut microbiome. However, we do not understand whether sample storage methods confound the ability to investigate interindividual variation in gut microbiome profiles. Here, we extend previous work on storage methods for gut microbiome samples by comparing immediate freezing, the gold standard of preservation, to three methods commonly used in vertebrate field studies: lyophilization, storage in ethanol, and storage in RNAlater. We found that the signature of individual identity consistently outweighed storage effects: alpha diversity and beta diversity measures were significantly correlated across methods, and while samples often clustered by donor, they never clustered by storage method. Provided that all analyzed samples are stored the same way, banked fecal samples therefore appear highly suitable for investigating variation in gut microbiota. Our results open the door to a much-expanded perspective on variation in the gut microbiome across species and ecological contexts.


Subject(s)
Animals, Wild , Feces , Gastrointestinal Microbiome , Specimen Handling , Animals , Biodiversity , Feces/microbiology , Freeze Drying
11.
Genetics ; 203(2): 699-714, 2016 06.
Article in English | MEDLINE | ID: mdl-27098910

ABSTRACT

Research on the genetics of natural populations was revolutionized in the 1990s by methods for genotyping noninvasively collected samples. However, these methods have remained largely unchanged for the past 20 years and lag far behind the genomics era. To close this gap, here we report an optimized laboratory protocol for genome-wide capture of endogenous DNA from noninvasively collected samples, coupled with a novel computational approach to reconstruct pedigree links from the resulting low-coverage data. We validated both methods using fecal samples from 62 wild baboons, including 48 from an independently constructed extended pedigree. We enriched fecal-derived DNA samples up to 40-fold for endogenous baboon DNA and reconstructed near-perfect pedigree relationships even with extremely low-coverage sequencing. We anticipate that these methods will be broadly applicable to the many research systems for which only noninvasive samples are available. The lab protocol and software ("WHODAD") are freely available at www.tung-lab.org/protocols-and-software.html and www.xzlab.org/software.html, respectively.


Subject(s)
Genome , Genotyping Techniques/methods , Papio/genetics , Pedigree , Sequence Analysis, DNA/methods , Animals , Feces/chemistry , Software
12.
Integr Comp Biol ; 55(3): 486-94, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25857525

ABSTRACT

As a goal-directed behavior, foraging for nectar functions on the basis of a sequence of innate stereotyped movements mainly regulated by sensory input. The operation of this inherited program is shaped by selective pressures acting on its efficiency, which is largely dependent upon the way the system handles sensory information. Flowers offer a wealth of signals, from odors acting as distant attractants, to colors eliciting approximation and feeding responses, to textures guiding feeding responses toward a reservoir of nectar. Thus, animals use different signals in the regulation of particular motor outputs. Nevertheless, the use of these sensory signals can be user-specific (e.g. species, motivation, experience, learning) as well as context-dependent (e.g. spatiotemporal patterns of stimulation, availability of signals, multimodal integration). The crepuscular/nocturnal hawkmoths Manduca sexta experience a wide range of illuminations during their foraging activity, which raises the question of how these environmental changes might affect the use of two important floral signals, odor and visual display. In a flight cage, we explored the use of these signals under different illuminances. Under conditions of starlight and crescent moonlight, moths showed very low levels of responsiveness to unscented feeders (artificial flowers). However, responsiveness was recovered either by increasing illumination, or by offering olfactory signals. Additionally, we recorded a bias toward white over blue feeders under dim conditions, which disappeared with increasing illumination. We discuss how this kind of experimental manipulation may provide insights to the study of how innate behavioral programs, and their underlying neural substrates, overcome selective forces imposed by the uncertainty of natural, ever-changing environments.


Subject(s)
Light , Moths/physiology , Odorants/analysis , Olfactory Perception , Visual Perception , Animals , Feeding Behavior/radiation effects , Female , Male , Moths/radiation effects
13.
Mol Ecol ; 24(10): 2521-36, 2015 May.
Article in English | MEDLINE | ID: mdl-25809385

ABSTRACT

Herbivorous vertebrates rely on complex communities of mutualistic gut bacteria to facilitate the digestion of celluloses and hemicelluloses. Gut microbes are often convergent based on diet and gut morphology across a phylogenetically diverse group of mammals. However, little is known about microbial communities of herbivorous hindgut-fermenting reptiles. Here, we investigate how factors at the individual level might constrain the composition of gut microbes in an obligate herbivorous reptile. Using multiplexed 16S rRNA gene sequencing, we characterized the faecal microbial community of a population of gopher tortoises (Gopherus polyphemus) and examined how age, genetic diversity, spatial structure and kinship influence differences among individuals. We recovered phylotypes associated with known cellulolytic function, including candidate phylum Termite Group 3, suggesting their importance for gopher tortoise digestion. Although host genetic structure did not explain variation in microbial composition and community structure, we found that fine-scale spatial structure, inbreeding, degree of relatedness and possibly ontogeny shaped patterns of diversity in faecal microbiomes of gopher tortoises. Our findings corroborate widespread convergence of faecal-associated microbes based on gut morphology and diet and demonstrate the role of spatial and demographic structure in driving differentiation of gut microbiota in natural populations.


Subject(s)
Gastrointestinal Tract/microbiology , Inbreeding , Microbiota/genetics , Turtles/microbiology , Animals , Bacteria/classification , DNA, Bacterial/genetics , Feces/microbiology , Florida , Microsatellite Repeats , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...