Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 13(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38539910

ABSTRACT

Aging is not only a key internal cause of age-related diseases in humans but also poses a threat to the productivity of farm animals with longer breeding cycles, such as laying chickens. Various measures were taken to prolong the laying period by reducing oxidative stress to improve poultry ovarian functions. Within the mitochondria, SIRT3, a member of the Sirtuin family, plays an important role in post-translational modifications and the regulation of protein activities involved in energy metabolism and oxidative response. This study aimed to investigate the alleviating effect of a bioactive lignan Honokiol (HKL) on oxidative stress in aging chicken ovaries in order to retard decline in egg production. The results showed that HKL treatment restored the abnormal balance between cell proliferation and apoptosis, and it enhanced the antioxidant capacity of the H2O2-induced small white follicles (SWFs) by activating the SIRT3/AMPK pathway. Moreover, HKL significantly increased total egg production, the number of yellow follicles, and the mRNA expression of yolk synthesis and deposition-related genes, serum estrogen, and antioxidant levels. These findings suggest that HKL holds promise in enhancing the egg productivity of aging laying chickens by promoting yolk deposition and reducing ovarian oxidative stress.

2.
Cells ; 13(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38474379

ABSTRACT

With the increase in the age of laying chickens, the aging of follicles is accelerated, and the reproductive ability is decreased. Increased oxidative stress and mitochondrial malfunction are indispensable causes of ovarian aging. In this study, the physiological condition of prehierarchical small white follicles (SWFs) was compared between D280 high-producing chickens and D580 aging chickens, and the effect of a plant-derived flavonoid nobiletin (Nob), a natural antioxidant, on senescence of SWFs granulosa cells (SWF-GCs) was investigated. The results showed that Nob treatment activated cell autophagy by activating the AMP-activated protein kinase (AMPK) and Sirtuin-1 (SIRT1) pathways in D-galactose (D-gal)-generated senescent SWF-GCs, restoring the expression of proliferation-related mRNAs and proteins. In addition, the expression of inflammation-related protein NF-κB was significantly enhanced in aging GCs that were induced by D-gal. Nob supplementation significantly increased the antioxidant capacity and decreased the expression of several genes associated with cell apoptosis. Furthermore, Nob promoted activation of PINK1 and Parkin pathways for mitophagy and alleviated mitochondrial edema. Either the AMPK inhibitor dorsomorphin (Compound C) or SIRT1 inhibitor selisistat (EX-527) attenuated the effect of Nob on mitophagy. The protective effect of Nob on natural aging, GC proliferation, and elimination of the beneficial impact on energy regulation of naturally aging ovaries was diminished by inhibition of Nob-mediated autophagy. These data suggest that Nob treatment increases the expression of mitophagy-related proteins (PINK1 and Parkin) via the AMPK/SIRT1 pathways to prevent ovarian aging in the laying chickens.


Subject(s)
Antioxidants , Chickens , Flavones , Female , Animals , Antioxidants/metabolism , Chickens/metabolism , AMP-Activated Protein Kinases/metabolism , Sirtuin 1/metabolism , Oxidative Stress , Aging , Autophagy , Ubiquitin-Protein Ligases/metabolism
3.
Front Biosci (Landmark Ed) ; 27(9): 260, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36224019

ABSTRACT

BACKGROUND: Epidemic encephalitis B is a common zoonosis that threatens both pigs and humans. Effective prevention and control of epidemic encephalitis B is difficult. The cellular defence mechanism is closely related to the body's resistance to viral invasion. Long non-coding RNAs (lncRNAs) are involved in regulating various cellular activities. We previously found that lncRNA-SUSAJ1 could inhibit the proliferation of Japanese encephalitis virus (JEV). However, the mechanism underlying this suppression remains unclear. METHODS: We performed Western blotting and quantitative reverse-transcription polymerase chain reaction (RT-qPCR) analyses, as well as mitochondrial membrane potential, flow cytometry, terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL), RNA pull-down, and RNA immunoprecipitation assays. RESULTS: JC-1 cationic dye staining showed that lncRNA-SUSAJ1 promoted the depolarisation of mitochondrial membrane potential; H2DCFDA probe staining showed that lncRNA-SUSAJ1 enhanced the level of reactive oxygen species in PK15 porcine kidney cells. qRT-PCR and Western blotting revealed the expression levels of associated mRNAs and proteins, and the TUNEL and flow cytometry assays detected cell apoptosis. Their results showed that lncRNA-SUSAJ1 promoted the expression of pro-apoptotic genes and inhibited the expression of anti-apoptotic genes. RNA pull-down experiments using biotin-labelled lncRNA-SUSAJ1 showed colocalisation between lncRNA-SUSAJ1 and the 70 kDa heat shock protein (Hsp70). lncRNA-SUSAJ1 also activated unfolded protein response-related pathways, regulated protein degradation, and promoted apoptosis via the endoplasmic reticulum stress response, thereby inhibiting viral replication. CONCLUSIONS: The findings of this study provide insight into the specific molecular mechanism of lncRNA-SUSAJ1 resistance to viral proliferation by promoting cell apoptosis, clarify the antiviral effect of lncRNA-SUSAJ1 on JEV.


Subject(s)
Encephalitis Virus, Japanese , RNA, Long Noncoding , Animals , Antiviral Agents , Apoptosis/genetics , Biotin/metabolism , Cell Proliferation , DNA Nucleotidylexotransferase/metabolism , Encephalitis Virus, Japanese/genetics , Heat-Shock Proteins/metabolism , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Reactive Oxygen Species , Signal Transduction/genetics , Swine
4.
Virol J ; 18(1): 29, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33509198

ABSTRACT

BACKGROUND: Japanese encephalitis virus is a mosquito-borne neurotropic flavivirus that causes acute viral encephalitis in humans. Pigs are crucial amplifier host of JEV. Recently, increasing evidence has shown that long non-coding RNAs (lncRNAs) play important roles in virus infection. METHODS: JEV proliferation was evaluated after overexpression or knockdown of lncRNA-SUSAJ1 using western blotting and reverse-transcription polymerase chain reaction (RT-PCR). C-C chemokine receptor type 1 (CCR1) was found to regulate the expression of lncRNA-SUSAJ1 by inhibitors screen. The expression of lncRNA-SUSAJ1 was detected using RT-PCR after overexpression or knockdown of transcription factor SP1. In addition, the enrichments of transcription factor SP1 on the promoter of lncRNA-SUSAJ1 were analyzed by chromatin immunoprecipitation. RESULTS: In this study, we demonstrated that swine lncRNA-SUSAJ1 could suppress JEV proliferation in PK-15 cells. We also found that CCR1 inhibited the expression of lncRNA-SUSAJ1 via the transcription factor SP1. In addition, knockdown of CCR1 could upregulated the expression of SP1 and lncRNA-SUSAJ1, resulting in resistance to JEV proliferation. CONCLUSIONS: These findings illustrate the importance of lncRNAs in virus proliferation, and reveal how this virus regulates lncRNAs in host cells to promote its proliferation.


Subject(s)
Host-Pathogen Interactions/genetics , RNA, Long Noncoding/genetics , Virus Replication/genetics , Animals , Cell Line , Encephalitis Virus, Japanese , Gene Expression Regulation , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...